精英家教网 > 初中数学 > 题目详情

【题目】如图(1),已知小正方形 ABCD 的面积为1,把它的各边延长一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形 A n B n C n D n 的面积为________

【答案】5n

【解析】试题分析:根据三角形的面积公式,知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.

如图(1),已知小正方形ABCD的面积为1,则把它的各边延长一倍后,三角形AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25,正方形AnBnCnDn的面积为5n

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把所有正偶数从小到大排列,并按如下规律分组:

第一组:2,4;

第二组:6,8,10,12;

第三组:14,16,18,20,22,24

第四组:26,28,30,32,34,36,38,40

……

则现有等式Am=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A10=(2,3),则A2018=( )

A. (31,63) B. (32,17) C. (33,16) D. (34,2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD=(提示:可连接BE)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如下图, ABCD,点EF分别为ABCD上一点.

(1) 在ABCD之间有一点M(点M不在线段EF上),连接MEMF,试探究∠AEM,∠EMF,∠MFC之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.

(2)如下图,在ABCD之间有两点MN,连接MEMNNF,请选择一个图形写出∠AEM,∠EMN,∠MNF,∠NFC 存在的数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别延长□ABCD的边CD,ABE,F,使DE=BF,连接EF,分别交AD,BCG,H,连结CG,AH.

求证:CG∥AH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列网格中建立平面直角坐标系如图,每个小正方形的边长均为1个单位长度.已知A(1,1)、B(3,4)和C(4,2).

(1)在图中标出点A、B、C.

(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E点,在图中标出D点和E点.

(3)求△EBD的面积S△EBD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,…….照此规律,点P第100次跳动至点P100的坐标是( )

A. (-26,50) B. (-25,50) C. (26,50) D. (25,50)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自学:如图1,△ABC中,D是BC边上一点,则△ABD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为 =
(△ABD,△ADC的面积分别用记号SABD , SADC表示)

(1)心得:如图1,若BD= DC,则SABD:SADC=
(2)成长:如图2,△ABC中,M,N分别是AB,AC边上一点,且有AM:MB=2:1,AN:NC=1:1,则△AMN与△ABC的面积比为
(3)巅峰:如图3,△ABC中,P,Q,R分别是BC,CA,AB边上的点,且AP,BQ,CR相交于点O,现已知△BPO,△PCO,△COQ,△AOR的面积依次为40,30,35,84,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面我们做一次折叠活动

第一步在一张宽为2的矩形纸片的一端利用图(1)的方法折出一个正方形然后把纸片展平折痕为MC

第二步如图(2),把这个正方形折成两个相等的矩形再把纸片展平折痕为FA

第三步折出内侧矩形FACB的对角线AB并将AB折到图(3)中所示的AD折痕为AQ

根据以上的操作过程完成下列问题

1)求CD的长

2)请判断四边形ABQD的形状并说明你的理由

查看答案和解析>>

同步练习册答案