精英家教网 > 初中数学 > 题目详情

【题目】自学:如图1,△ABC中,D是BC边上一点,则△ABD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为 =
(△ABD,△ADC的面积分别用记号SABD , SADC表示)

(1)心得:如图1,若BD= DC,则SABD:SADC=
(2)成长:如图2,△ABC中,M,N分别是AB,AC边上一点,且有AM:MB=2:1,AN:NC=1:1,则△AMN与△ABC的面积比为
(3)巅峰:如图3,△ABC中,P,Q,R分别是BC,CA,AB边上的点,且AP,BQ,CR相交于点O,现已知△BPO,△PCO,△COQ,△AOR的面积依次为40,30,35,84,求△ABC的面积.

【答案】
(1)1:2
(2)1:3
(3)

解:设△BRO和△AOQ的面积分别为x、y,

∵△BPO,△PCO的面积分别为40,30,

=

= ,即 =

=2,

∴OB=2OQ,

=2,即 =2,

解得,

∴△ABC的面积为:40+30+35+84+60+72=321


【解析】解:心得:∵BD= DC,
=
∴SABD:SADC=1:2,
所以答案是:1:2;
成长:如图②.连接BN,
∵AN:NC=1:1,
∴SANB=SCNB= SABC
∵AM:MB=2:1,
∴SAMN= SANB
∴△AMN与△ABC的面积比为1:3,
所以答案是:1:3;
巅峰:

【考点精析】本题主要考查了相似三角形的应用的相关知识点,需要掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某牛奶厂在一条南北走向的大街上设有OABC四家特约经销店.A店位于O店的南面3千米处;B店位于O店的北面1千米处,C店在O店的北面2千米处.

(1)请以O为原点,向北的方向为正方向,1个单位长度表示1千米,画一条数轴,你能在数轴上分别表示出OABC的位置吗?

(2)牛奶厂的送货车从O店出发,要把一车牛奶分别送到ABC三家经销店,那么送货车走的最短路程是多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),已知小正方形 ABCD 的面积为1,把它的各边延长一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 边长按原法延长一倍得到正方形 A 2 B 2 C 2 D 2 (如图(2));以此下去,则正方形 A n B n C n D n 的面积为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅游团上午6时从旅馆出发,乘汽车到距离210km的某著名旅游景点游玩,该汽车离旅馆的距离S(km)与时间t(h)的关系可以用如图的折线表示.根据图象提供的有关信息,解答下列问题:
(1)求该团去景点时的平均速度是多少?
(2)该团在旅游景点游玩了多少小时?
(3)求返回到宾馆的时刻是几时几分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.

证明:∵   

∴∠CDA=90°,∠DAB=90° (   ).

∴∠1+∠3=90°,∠2+∠4=90°.

又∵∠1=∠2,

      ),

∴DF∥AE (   ).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案.已知该图案的面积为49,小正方形的面积为4,若分别用x,y(x >y)表示小长方形的长和宽,则下列关系式中不正确的是( )

A. x+y=7 B. x-y=2 C. x2 +y2=25 D. 4xy+4=49

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)解方程组
(2)解不等式: <4﹣ ,并把解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得到四边形A3B3C3D3,…,已知AB=6, BC=8,按此方法得到的四边形A5B5C5D5的周长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(1)(-)-(+)-(-)-(-);

(2)(-8)-(+12)-(-70)-(-8);   (3)(-3)-(-17)-(-33)-81.

查看答案和解析>>

同步练习册答案