精英家教网 > 初中数学 > 题目详情

【题目】如图,顺次连接矩形ABCD四边的中点得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点得到四边形A3B3C3D3,…,已知AB=6, BC=8,按此方法得到的四边形A5B5C5D5的周长为______

【答案】5

【解析】根据菱形和矩形的性质以及三角形中位线的性质以及勾股定理求出四边形各边长得出规律求出即可.

解:∵矩形ABCD中,AB=6,AD=8,顺次连结矩形形ABCD各边中点,
∴四边形A1B1C1D1是菱形,
∴A1B1=5,
∴四边形A1B1C1D1的周长是:5×4=20,
同理可得出:A2D2=8×=4,C2D2=AB=×6=3,
∴A3D3=
∴四边形A3B3C3D3的周长是:×4=10,

∴四边形A5B5C5D5周长是:××4=5.
故答案为:5.

“点睛”此题主要考查了菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如下图, ABCD,点EF分别为ABCD上一点.

(1) 在ABCD之间有一点M(点M不在线段EF上),连接MEMF,试探究∠AEM,∠EMF,∠MFC之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.

(2)如下图,在ABCD之间有两点MN,连接MEMNNF,请选择一个图形写出∠AEM,∠EMN,∠MNF,∠NFC 存在的数量关系(不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自学:如图1,△ABC中,D是BC边上一点,则△ABD与△ADC有一个相同的高,它们的面积之比等于相应的底之比,记为 =
(△ABD,△ADC的面积分别用记号SABD , SADC表示)

(1)心得:如图1,若BD= DC,则SABD:SADC=
(2)成长:如图2,△ABC中,M,N分别是AB,AC边上一点,且有AM:MB=2:1,AN:NC=1:1,则△AMN与△ABC的面积比为
(3)巅峰:如图3,△ABC中,P,Q,R分别是BC,CA,AB边上的点,且AP,BQ,CR相交于点O,现已知△BPO,△PCO,△COQ,△AOR的面积依次为40,30,35,84,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】6月5日是“世界环境日”,某校从3名男生和2名女生中随机抽取学生去参加市中学生环保演讲比赛.
(1)若抽取1名学生参加,恰好是男生的概率是
(2)如果抽取1名学生参加,请用列表或树状图求出恰好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的数为6,B是数轴上一点,且

.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t)秒.

(1)请写出数轴上点B表示的数    ,点P表示的数    (用含t 的整式表示);

(2)若MAP的中点,NPB的中点.P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明有5张写着不同的数字的卡片,请你按要求抽出卡片,完成下列各问题:

(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是   

(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是   

(3)从中取出4张卡片,用学过的运算方法,使结果为24.写出运算式子:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面我们做一次折叠活动

第一步在一张宽为2的矩形纸片的一端利用图(1)的方法折出一个正方形然后把纸片展平折痕为MC

第二步如图(2),把这个正方形折成两个相等的矩形再把纸片展平折痕为FA

第三步折出内侧矩形FACB的对角线AB并将AB折到图(3)中所示的AD折痕为AQ

根据以上的操作过程完成下列问题

1)求CD的长

2)请判断四边形ABQD的形状并说明你的理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)(-6)-(-9); (2)1.8-(-2.6);

(3); (4)8-(9-10);

(5)(-61)-(-71)-(-8)-(-2); (6)-3.7-(-)-1.3.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣3)2 +( 1
(2)(x+1)2﹣2(x﹣2).

查看答案和解析>>

同步练习册答案