精英家教网 > 初中数学 > 题目详情

【题目】Rt△ABC中,直角边为a、b,斜边为c.若把关于x的方程ax2+cx+b=0称为勾系一元二次方程,则这类勾系一元二次方程的根的情况是(  )

A. 有两个不相等的实数根 B. 有两个相等的实数根

C. 没有实数根 D. 一定有实数根

【答案】D

【解析】

由勾股定理可得出c2=a2+b2,根据“勾系一元二次方程”的定义结合根的判别式可得出△=2(a-b)2≥0,由此可得出“勾系一元二次方程”一定有实数根.

解:∵在Rt△ABC中,直角边为a、b,斜边为c,
∴c2=a2+b2

在方程中,△= -4ab=2(a2+b2-2ab)=2(a-b)2

∵(a-b)2≥0,
∴2(a-b)2≥0,即△≥0,
∴这类“勾系一元二次方程”一定有实数根.
故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】日是第个世界读书日,为迎接第个世界读书日的到来,某校举办读书分享大赛活动:大赛以“推荐分享”为主题,参赛者选择一本自己最喜欢的书,然后给该书写一段推荐语、一篇读书心得、举办一场读书讲座.大赛组委会对参赛者提交的推荐语、读书心得、举办的读书讲座进行打分(各项成绩均按百分制),综合成绩排名第一的选手将获得大赛一等奖.现有甲、乙两位同学的各项成绩如下表所示;

参赛者

推荐语

读书心得

读书讲座

1)若将三项成绩的平均分作为参赛选手的综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.

2)若“推荐语”“读书心得”“读书讲座”的成绩按确定综合成绩,则甲、乙二人谁最有可能获得大赛一等奖?请通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】再读教材:

宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)

第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,

第四步,展平纸片,按照所得的点D折出 DE,使 DEND,则图④中就会出现黄金矩形,

问题解决:

(1)图③中AB=________(保留根号);

(2)如图③,判断四边形 BADQ的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平行四边形ABCD中,对角线ACBD相交于点O,经过点O的直线与边AB相交于点E,与边CD相交于点F.

(1)求证:OE=OF;

(2)如图2,连接DE,BF,当DEAB时,在不添加其他辅助线的情况下,直接写出腰长等于BD的所有的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设(分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为千米,骑自行车学生骑行的路程为千米,关于的函数图象如图所示.

1)求关于的函数解析式;

2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,某办公大楼正前方有一根高度是15米的旗杆ED,从办公大楼顶端A测得旗杆顶端E的俯角α45°,旗杆低端D到大楼前梯坎底边的距离DC20米,梯坎坡长BC12米,梯坎坡度i=1: ,则大楼AB的高度为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校组织大手拉小手,义卖献爱心活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了 黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:

批发价()

零售价()

文化衫

25

45

20

35

(1)学校购进黑.白文化衫各几件?

(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtAEBRtAFC中,∠E=F=90°BE=CFBEAC相交于点M,与CF相交于点DABCF相交于点N,∠EAC=FAB.有下列结论:①∠B=C;②CD=DN;③CM=BN;④△ACN≌△ABM.其中正确结论的序号是________

查看答案和解析>>

同步练习册答案