精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,正比例函数y=kx的图象经过点A,

(1)请你求出该正比例函数的解析式;

(2)若这个函数的图象还经过点B(m,m+3),请你求出m的值;

(3)请你判断点P(﹣,1)是否在这个函数的图象上,为什么?

【答案】(1)正比例函数解析式为y=﹣2x;(2)m=﹣1;(3)点P不在这个函数图象上,理由见解析

【解析】

(1)将点A的坐标代入正比例函数解析式中求出k的值,即可确定出正比例解析式;(2)将点B(m,m+3)代入所求的解析式,即可求得m的值;(3)把x=- 代入所求的解析式,求得y的值,比较即可.

1)由图可知点A(﹣1,2),代入y=kx得:

﹣k=2,k=﹣2,

则正比例函数解析式为y=﹣2x;

(2)将点B(m,m+3)代入y=﹣2x,得:﹣2m=m+3,

解得:m=﹣1;

(3)当x=﹣时,y=﹣2×(﹣)=3≠1,

所以点P不在这个函数图象上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):

(1) 写出该厂星期一生产工艺品的数量.

(2) 本周产量最多的一天比最少的一天多生产多少个工艺品?

(3) 请求出该工艺品厂在本周实际生产工艺品的数量.

(4) 已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,将ABE沿着AE折叠至AEF的位置,点F在对角线AC上.若BE=3,EC=5,则AB的长为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强公民的节约意识,我市出台阶梯电价计算方案:居民生活用电将月用电量分为三档,第一档为月用电量200度(含)以内,第二档为月用电量200~320度(含),第三档为月用电量320度以上.这三个档次的电价分别为:第一档0.52/度,第二档0.57/度,第三档0.82/度.

(1)若某户居民10月份电费78元,则该户居民10月份用电________度;

(2)若该户居民2月份用电340度,则应缴电费________元;

(3)用x(度)来表示月用电量,请根据x的不同取值范围,用含x的代数式表示出月用电费用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.

(1)体育场离小强家有多远?小强从家到体育场用了多长时间?

(2)体育场距文具店多远?

(3)小强在文具店逗留了多长时间?

(4)小强从文具店回家的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,AD=12,过点A、D两点的⊙O与BC边相切于点E,则⊙O的半径为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形AOCB的边长为4,反比例函数y= (k≠0,且k为常数)的图象过点E,且S△AOE=3S△OBE
(1)求k的值;
(2)反比例函数图象与线段BC交于点D,直线y= x+b过点D与线段AB交于点F,延长OF交反比例函数y= (x<0)的图象于点N,求N点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.

(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动   个单位;

(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:

点A、B、C表示的数分别是          (用含a、t的代数式表示);

若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据有关资料统计,两个城市之间每天的电话通话次数T与这两个城市的人口数xy(单位:万人)以及两城市间的距离l(单位:km)之间有下列关系式(k为常数) 己知A,B,C三个城市的人口数及它们之间的距离如图所示如果A,B两个城市间每天的电话通话次数为n,B,C两个城市间每天的电话通话次数(用含n的代数式表示)

查看答案和解析>>

同步练习册答案