精英家教网 > 初中数学 > 题目详情

【题目】二次函数yax2bxcabc 为常数,且a≠0)的图像上部分点的横坐标x和纵

坐标y的对应值如下表

x

1

0

1

2

3

y

3

3

1

3

9

关于x的方程ax2bxc0一个负数解x1满足kx1k+1k为整数),则k________

【答案】3

【解析】

首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k

:x=0,y=-3,x=1,y=-1,x=-1,y=-3代入yax2bxc

,解得,∴y=x+x-3,

∵△=b2-4ac=12-4×1×-3=13
x==1±
<0,

=1-0
-4≤-≤-3

-3≤1
∵整数k满足kx1k+1
k=-3
故答案为:-3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线上有一点的横坐标为1,过轴,与抛物线的另一个交点为,且,作轴,垂足为,抛物线与轴正半轴交于点,连结交于点

1)当时,①求点的坐标:②求的面积:

2)当是以为腰的等腰三角形时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】马踏飞燕作为商丘的地标性雕塑被拆分为两座雕塑,安放在紧邻高速公路出站口的平原路和华商大道交叉口,不光临近古城景区,也靠近火神台,恰恰实现了商丘市的城市文化宣传的目的.人们来到商丘,一下高速,就看到商丘的地标,就能够感受到商丘的火文化.

某中学数学兴趣小组准备测量安放后的雕塑相关数据,如图,小明从A点测得火球最高点E的仰角为4°30′,此处恰好看不到马踏飞燕雕塑的最高点F,小明向雕塑走140m到达点B,此时测得点E的仰角为45°.已知两雕塑的距离为50m,求两座雕塑ECFD的高度.(ABCD在同一直线上)(精确到1m,参考值:sin4°30′≈0.07cos4°30′≈0.99tan4°30′≈0.08.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某社区调查社区居民双休日的学习状况,采取下列调查方式:①从一幢高层住宅楼中选取200名居民;②从不同住层楼中随机选取200名居民;③选取社区内的200名在校学生.

1)上述调查方式最合理的是   (填序号);

2)将最合理的调查方式得到的数据制成扇形统计图(如图①)和频数分布直方图(如图②).

①请补全直方图(直接画在图②中);

②在这次调查中,200名居民中,在家学习的有   人;

3)请估计该社区2000名居民中双休日学习时间不少于4h的人数;

4)小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔没有学习的概率是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实国务院的指示精神,某地方政府出台了一系列三农优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.

1)求wx之间的函数关系式.

2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?

3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数yx22mxm2m1m为常数).

1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;

2)将该二次函数的图像向下平移kk0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的对角线,的边的长是三个连续偶数,分别是边上的动点,且,将沿着折叠得到,连接.若为直角三角形时,的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国北方又进入了火灾多发季节,为此,某校在全校1200名学生中随机抽取一部分人进行“安全防火,警钟长鸣”知识问卷调查活动,对问卷调查成绩按“很好”、“较好”、“一般”“较差”四类汇总分析,并绘制了如下扇形统计图和条形统计图.

1)本次活动共抽取了多少名同学?

2)补全条形统计图;

3)根据以上调查结果分析,估计该校1200名学生中,对“安全防火”知识了解“较好”和“很好”的学生大约共计有多少名.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线沿轴翻折得到抛物线.

1)求抛物线的顶点坐标;

2)横、纵坐标都是整数的点叫做整点.

时,求抛物线围成的封闭区域内(包括边界)整点的个数;

如果抛物线C1C2围成的封闭区域内(包括边界)恰有个整点,求m取值范围.

查看答案和解析>>

同步练习册答案