【题目】青山村种的水稻2010年平均每公顷产7200kg,2012年水稻平均每公顷产的产量是8400kg,设水稻每公顷产量的年平均增长率为x,可列方程为( )
A.7200(1+x)2=8400B.7200(1+x2)=8400
C.7200(x2+x)=8400D.7200(1+x)=8400
科目:初中数学 来源: 题型:
【题目】2019年春运,长春机场春运前十天客流量持续攀升,共计保障航班起降2727架次,运送旅客大约364000人次,数据364000科学记数法表示为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:
①抛物线y=ax2(a≠0)的图象的顶点一定是原点;
②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;
③AB的长度可以等于5;
④△OAB有可能成为等边三角形;
⑤当-3<x<2时,ax2+kx<b,
其中正确的结论是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,已知AD∥BC,AB⊥BC,点E,F在边AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,FC=2 .
(1)BC= .
(2)求点D到BC的距离.
(3)求DC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC内部作∠MAN=45°.AM、AN分别交BC于点M,N.
(1)将△ABM绕点A逆时针旋转90°,使AB边与AC边重合,把旋转后点M的对应点记作点Q,得到ACQ,请在图1中画出△ACQ;(不写出画法)
(2)在(1)中作图的基础上,连接NQ,
①求证“MN=NQ”;
②写出线段BM,MN和NC之间满足的数量关系,并简要说明理由.
(3)线段GS,ST和TH之间满足的数量关系是
(4)设DK=a,DE=b,求DP的值.(用a,b表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市制药厂需要紧急生产一批药品,要求必须在12天(含12天)内完成.为了加快生产,车间采取工人加班,机器不停的生产方式,这样每天药品的产量y(吨)是时间x(天)一次函数,且满足表中所对应的数量关系.由于机器负荷运转产生损耗,平均生产每吨药品的成本P(元)与时间x(天)的关系满足图中的函数图象.
时间x(天) | 2 | 4 |
每天产量y(吨) | 24 | 28 |
(1)求药品每天的产量y(吨)是时间x(天)之间的函数关系式;
(2)当5≤x≤12时,直接写出P(元)与时间x(天)的函数关系是P=;
(3)若这批药品的价格为1400元/吨,每天的利润设为W元,求哪一天的利润最高,最高利润是多少?(利润=价格﹣成本)
(4)为了提高工人加班的津贴,药厂决定在(3)中价格的基础上每吨药品加价a元,但必须满足从第5天到第12天期间,每吨加价a后每天的利润随时间的增大而增大,直线写出a的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(﹣1, ),B(2,0)在抛物线11:y=ax2+bx+1(a,b为常数,且a≠0)上,直线12经过抛物线11的顶点且与y轴垂直,垂足为点D.
(1)求l1的解析式,并写出它的对称轴和顶点坐标;
(2)设l1上有一动点P从点A出发,沿抛物线从左向右运动,点P的纵坐标yp也随之以每秒2个单位长的速度变化,设点P运动的时间为t(秒),连接OP,以线段OP为直径作⊙F.
①求yp关于t的表达式,并写出t的取值范围;
②当点P在起点A处时,直线l2与⊙F的位置关系是 , 在点P从点A运动到点D的过程中,直线12与⊙F是否始终保持着上述的位置关系?请说明理由;
(3)在(2)条件下,当点P开始从点A出发,沿抛物线从左到右运动时,直线l2同时向下平移,垂足D的纵坐标yD以每秒3个单位长度速度变化,当直线l2与⊙F相交时,求t的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com