【题目】解方程
解:方程两边同时乘以(x+2)(x-2)…(A)
(x+2)(x-2)
化简得:x-2+4x=2(x+2)….. (B)
去括号、移项得:x+4x-2x=4+2…(C)
解得:x=2…..(D)
原方程的解是x=2….(E)
问题:①上述解题过程的错误在第____步,其原因是_____②该步改正为:
【答案】E 没有进行检验
【解析】
,解分式方程的基本思路是转換,即把分式方程转換为整式方程,利用整式方程的解法来求解,而转换的关键是找出各分母的最简公分母,利用去分母的方法转"分"为“整",最后求出方程的解后,必须检验求出的x是否满足分式方程,其方法是把求出的ⅹx的值代入最简公分母中进行计算看其值是否为0,若为0,求出的x为分式方程的增根,若不为0,求出的x的值即为分式方程的解通过阅读解题过程发现,解题过程的错误在最后一步即E步,原因是没有经过检验,即没有把求出的x=2代入最简公分母进行计算,看是否为0把x=2代入最简公分母(x+2)(x-2)计算后,其值为0,说明X=2是增根,原分式方程无解
上述解题过程的错误在第E步,其原因是没有进行检验
该步改正为:把x=2代入(x+2)(x-2)得(2+2)(2-2)=0,
∴x=2是增根,原方程无解
故答案为:E;没有进行检验
科目:初中数学 来源: 题型:
【题目】如图,一个长方形运动场被分隔成、、、、共个区, 区是边长为的正方形, 区是边长为的正方形.
(1)列式表示每个区长方形场地的周长,并将式子化简;
(2)列式表示整个长方形运动场的周长,并将式子化简;
(3)如果, ,求整个长方形运动场的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B两城相距900千米,一辆客车从A城开往B城,车速为每小时80千米,同时一辆出租车从B城开往A城,车速为每小时100千米,设客车出发时间为t(小时).
探究 若客车、出租车距A城的距离分别为y1、y2,写出y1、y2关于t的函数关系式及自变量取值范围,并计算当y1=240千米时y2的値.
发现 (1)设点C是A城与B城的中点,AC=AB,通过计算说明:哪个车先到达C城?该车到达C后再经过多少小时,另一个车会到达C?
(2)若两车扣相距100千米时,求时间t.
决策 已知客车和出租车正好在A,B之间的服务站D处相遇,此时出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种选择返回B城的方案:
方案一:继续乘坐出租车到C城,加油后立刻返回B城,出租车加油时间忽略不计;
方案二:在D处换乘客车返回B城.
试通过计算,分析小王选择哪种方式能更快到达B城?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知为有理数,定义一种新运算,其意义是,试根据这种运算完成下列各题
(1)求①23;②(43)(-2)
(2)任意选择两个有理数,分别代替与,并比较和两个运算的结果,你有何发现;
(3)根据以上方法,探索的关系,并用等式把它们表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是斜边AB的长为3的等腰直角三角形,在△ABC内作第1个内接正方形A1B1D1E1(D1、E1在AB上,A1、B1分别在AC、BC上),再在△A1B1C内接同样的方法作第2个内接正方形A2B2D2E2,…如此下去,操作n次,则第n个小正方形AnBnDnEn 的边长是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与相交于点,,将一直角三角尺的直角顶点与点重合,平分.
(1)的度数为______________;
(2)将三角尺以每秒的速度绕点顺时针旋转,同时直线也以每秒的速度绕点顺时针旋转,设运动时间为秒.
①求当为何值时,直线平分;
②求当为何值时,直线平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正确的是( )
A. ①②③ B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).
(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;
(2)求S与t之间的函数关系式;
(3)当t为何值时,S有最大值,最大值是多少?
(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com