【题目】如图,菱形的边长为是边的中点,是边上的一个动点,将线段绕着逆时针旋转,得到,连接,则的最小值为( )
A. B. C. D.
【答案】B
【解析】
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B,此时CE的长就是GB+GC的最小值;先证明E点与E'点重合,再在Rt△EBC中,EB=2,BC=4,求EC的长.
取AB与CD的中点M,N,连接MN,作点B关于MN的对称点E',连接E'C,E'B
,
此时CE的长就是GB+GC的最小值;
∵MN∥AD,
∴HM=AE,
∵HB⊥HM,AB=4,∠A=60°,
∴MB=2,∠HMB=60°,
∴HM=1,
∴AE'=2,
∴E点与E'点重合,
∵∠AEB=∠MHB=90°,
∴∠CBE=90°,
在Rt△EBC中,EB=2,BC=4,
∴EC=2,
故选A.
科目:初中数学 来源: 题型:
【题目】如图,点是等边内一点,,,将绕点顺时针方向旋转得到,连接,.
(1)当时,判断的形状,并说明理由;
(2)求的度数;
(3)请你探究:当为多少度时,是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=x2+bx+c经过点A(-1,t),B(3,t),与y轴交于点C(0,-1).一次函数y=x+n的图象经过抛物线的顶点D.
()求抛物线的表达式.
()求一次函数的表达式.
()将直线绕其与轴的交点旋转,使当时,直线总位于抛物线的下方,请结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼AB高16m,远处有一塔CD,某人在楼底B处测得塔顶C的仰角为38.5°,在楼顶A处测得塔顶的仰角为22°,求塔高CD的高及大楼与塔之间的距离BC的长.
(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,si38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.
(1)如图1,当点与点重合时,的形状是_____________________;
(2)当点在点M的左侧时,如图2.
①依题意补全图2;
②判断的形状,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:
碟子的个数 | 1 | 2 | 3 | 4 | … |
碟子的高度(单位:cm) | 2 | 2+1.5 | 2+3 | 2+4.5 | … |
(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示).
(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.
(1)当点A、P、F在一条直线上时,求△ABF的面积;
(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;
(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图像与一次函数的图像交于点,点的横坐标是,点是第一象限内反比例函数图像上的动点,且在直线的上方.
(1)若点的坐标是,则 , ;
(2)设直线与轴分别交于点,求证:是等腰三角形;
(3)设点是反比例函数图像位于之间的动点(与点不重合),连接,比较与的大小,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.
(1)求AE的长;
(2)当t为何值时,△PAE为直角三角形?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com