精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,己知AB=AC=5,BC=6,且将△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.

(1)求证:△ABE∽△ECM;

(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;

(3)当点E运动到什么位置时,线段AM最短?并求出此时AM的值.(直接写出答案)


【考点】相似形综合题.

【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;

(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;

(3)先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=﹣(x﹣3)2+,利用二次函数的性质,继而求得线段AM的最小值.

【解答】(1)证明:∵AB=AC,

∴∠B=∠C,

∵△ABC≌△DEF,

∴∠AEF=∠B,

又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,

∴∠CEM=∠BAE,

∴△ABE∽△ECM;

(2)解:∵∠AEF=∠B=∠C,且∠AME>∠C,

∴∠AME>∠AEF,

∴AE≠AM;

当AE=EM时,则△ABE≌△ECM,

∴CE=AB=5,

∴BE=BC﹣EC=6﹣5=1,

当AM=EM时,则∠MAE=∠MEA,

∴∠MAE+∠BAE=∠MEA+∠CEM,

即∠CAB=∠CEA,

又∵∠C=∠C,

∴△CAE∽△CBA,

∴CE==

∴BE=6﹣=

∴BE=1或

(3)解:设BE=x,

又∵△ABE∽△ECM,

=

即:=

∴CM=﹣+x=﹣(x﹣3)2+

∴AM=﹣5﹣CM=(x﹣3)2+

∴当x=3时,AM最短为

∴BE=3时,AM最短为

【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题.此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有个数的序号           .

查看答案和解析>>

科目:初中数学 来源: 题型:


李大爷一年前买入了A、B两种兔子共46只,目前,他所养的这两种兔子数量相同,且A种兔子的数量比买入时减少了3只,B种兔子的数量比买入时减少a只.

(1)则一年前李大爷买入A种兔子     只,目前A、B两种兔子共     只(均用含a的代数式表示);

(2)若一年前买入的A种兔子数量多于B种兔子数量,则目前A、B两种兔子共有多少只?

(3)李大爷目前准备卖出30只兔子,已知卖A种兔子可获利15元/只,卖B种兔子可获利6元/只,如果卖出的A种兔子少于15只,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.

查看答案和解析>>

科目:初中数学 来源: 题型:


让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:


解方程:2(x+1)2﹣x(x﹣2)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,小方格都是边长为1的正方形,则四边形ABCD的面积是(     )

A.25     B.12.5  C.9       D.8.5

查看答案和解析>>

科目:初中数学 来源: 题型:


命题“两直线平行,同位角相等.”的逆命题是__________

查看答案和解析>>

科目:初中数学 来源: 题型:


点(2,﹣1)所在象限为(     )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在△ABC中,∠C=∠ABC=2∠A,BD⊥AC于D,求∠DBC的度数.

查看答案和解析>>

同步练习册答案