【题目】已知如图,以的边为直径作交斜边于点连接并延长交的延长线于点,点为的中点,连接.
(1)求证:是的切线;
(2)若的半径为,求的长.
【答案】(1)见解析;(2)3.
【解析】
(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.
(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.
证明:(1)如图1,连接FO,
∵F为BC的中点,AO=CO,
∴OF∥AB,
∵AC是⊙O的直径,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直线垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE为⊙O的切线;
(2)如图2,∵⊙O的半径为3,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD=3,
∵在Rt△ACD中,∠ACD=90°,
CD=3,AC=6,
∴AD=3.
科目:初中数学 来源: 题型:
【题目】已知抛物线与轴交于点和点,与直线交于点和点,为抛物线的顶点,直线是抛物线的对称轴.
(1)求抛物线的解析式及点的坐标.
(2)点为直线上方抛物线上一点,设为点到直线的距离,当有最大值时,求点的坐标.
(3)若点为直线上一点,作点关于轴的对称点,连接,,当是直角三角形时,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,∠BAD=60°
(1) 如图1,点E为线段AB的中点,连接DE、CE.若AB=4,求线段EC的长
(2) 如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,线段MN与AD交于点G,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论
(3) 在(2)的条件下,若AC=,请你直接写出DM+CN的最小值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C. 34 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=6,AC=10,BC边上的中线AD=4
(1)以点D为对称中心,作出△ABD的中心对称图形;
(2)求点A到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全国人民每天都很关心新型冠状病毒感染肺炎的全国疫情和湖北疫情,下面是2020年2月7日小明在网上看到的2020年2月6日有关全国和武汉的疫情统计图表:
图1全国疫情趋势图
图2新增确诊病例趋势图
根据统计图表提供的信息,下列推断不合理的是( )
A.从图1可得出在2月6日的全国确诊病例达到3万多,是“非典”确诊病例(共5327例)的若干倍,说明新型冠状病毒比“非典”病毒传染性强.
B.从图2可得出在2月6日新增病例出现下降,说明此时全国的累计确诊病例开始下降,肺炎疫情得到控制,政府和人民的防疫工作有了显著成效
C.从图2在2月6日新增病例出现下降,可以估计2月6日后全国新型冠状病毒肺炎累计确诊病例的单日增长率会低于10%.
D.从表1可看出确诊病例较多的省市大部分都是在湖北周围,很大原因是由于携带病毒的流动人口造成的,所以控制疫情的有效手段是在家隔离,同时也可以推断在新疆和甘肃等西北地区疫情相对缓和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐徐州号高铁A与复兴号高铁B前往北京.已知A车的平均速度比B车的平均速度慢70km/n,A车的行驶时间比B车的行驶时间多25%,两车的行驶时间分别为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com