精英家教网 > 初中数学 > 题目详情

【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1 , 它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2 , 交x轴于A2;将C2绕A2旋转180°得到C3 , 交x轴于A3;…如此进行下去,直至得到C2017 . 若点P是第2016段抛物线的顶点,则P点的坐标为

【答案】(﹣1,0)
【解析】解:由题意可知:

第1段抛物线的顶点坐标为:(1,0),

第2段抛物线的顶点坐标为:(﹣1,0),

第3段抛物线的顶点坐标为:(1,0)

故第2016段抛物线的顶点为:(﹣1,0)

所以答案是:(﹣1,0)

【考点精析】认真审题,首先需要了解二次函数图象的平移(平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减),还要掌握抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.

(1)请用两种不同的方法求图2中阴影部分的面积.

方法1:      

方法2:     

(2)观察图2请你写出下列三个代数式:(m+n2,(m-n2mn之间的等量关系    

(3)根据(2)题中的等量关系,解决如下问题:

①已知:,求:的值;

②已知:求:的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】给出下面四个方程:x+y=2,xy=1,x=cos60°,y+2x=5
(1)任意两个方程所组成的方程组是二元一次方程组的概率是多少?
(2)请找出一个解是整数的二元一次方程组,并直接写出这个方程组的解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=90°BD⊥DECE⊥DE,添加下列条件后仍不能使△ABD≌△CAE的条件是(  )

A. AD=AE B. AB=AC C. BD=AE D. AD=CE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,求李师傅加工2个甲种零件和4个乙种零件共需多少分钟.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CE.连接DE,DF,EF.在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形,
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是( )
A.①②③
B.①④⑤
C.①③④
D.③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.物价部门规定,这种护眼台灯的销售单价不得高于32元.销售过程中发现,月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+n.
(1)当销售单价x定为25元时,李明每月获得利润为w为1250元,则n=
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)当销售单价定为多少元时,每月可获得最大利润?并求最大利润为多少元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②tan∠CAD=
③DF=DC;④△AEF∽△CAB;⑤ S四边形CDEF=S△ABF ,其中正确的结论有( )

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

同步练习册答案