【题目】已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=2.
(1)求该反比例函数的解析式;
(2)求三角形CDE的面积.
【答案】(1);(2)12.
【解析】
(1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
(2)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
解:(1)∵tan∠ABO=,OB=4,
∴OA=2,
∵OE=2,
∴BE=6,
∵AO∥CE,
∴△BAO∽△BEC,
∴=,即=,
解得,CE=3,即点C的坐标为(﹣2,3),
∴反比例函数的解析式为:;
(2)设直线AB的解析式为:y=kx+b,
则,
解得,,
则直线AB的解析式为:,
,
解得,,,
∴当D的坐标为(6,1),
∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
=×6×3+×6×1
=12.
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.
小刚同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠APB=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.
请你参考小刚同学的思路,探究并解决下列问题:
如图3,在正方形ABCD内有一点P,且PA=,BP=2,PC=.求∠BPC度数的大小和正方形ABCD的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):
请根据图中提供的信息,完成下列问题:
(1)在这次问卷调查中,一共抽查了 名学生;并在图中补全条形统计图;
(2)如果全校共有学生1600名,请估计该校最喜欢“科普”书籍的学生约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于等腰三角形,有以下说法:
(1)有一个角为的等腰三角形一定是锐角三角形
(2)等腰三角形两边的中线一定相等
(3)两个等腰三角形,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等
(4)等腰三角形两底角的平分线的交点到三边距离相等
其中,正确说法的个数为( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边中,厘米,厘米,如果点以厘米的速度运动.
(1)如果点在线段上由点向点运动.点在线段上由点向点运动,它们同时出发,若点的运动速度与点的运动速度相等:
①经过“秒后,和是否全等?请说明理由.
②当两点的运动时间为多少秒时,刚好是一个直角三角形?
(2)若点的运动速度与点的运动速度不相等,点从点出发,点以原来的运动速度从点同时出发,都顺时针沿三边运动,经过秒时点与点第一次相遇,则点的运动速度是__________厘米秒.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线过点A(4,0),B(﹣2,0),C(0,﹣4).
(1)求抛物线的解析式;
(2)在图甲中,点M是抛物线AC段上的一个动点,当图中阴影部分的面积最小值时,求点M的坐标;
(3)在图乙中,点C和点C1关于抛物线的对称轴对称,点P在抛物线上,且∠PAB=∠CAC1,求点P的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,△BCE的面积是6,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?
(1)特殊探究:若,则_________度,________度,_________度;
(2)类比探索:请猜想与的关系,并说明理由;
(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为 ;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ= ;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com