分析 (1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;
(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.
(3)添加∠BAC=90°,根据直角三角形的性质:斜边中线等于斜边的一半可得AD=BD,进而可得矩形AFBD是正方形.
解答 解:(1)BD=CD,
理由:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中点,
∴AE=DE,
在△AEF和△DEC中,$\left\{\begin{array}{l}{∠AFE=∠DCE}\\{∠AEF=∠DEC}\\{AE=DE}\end{array}\right.$,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∴AF=BD,
∴DB=CD;
(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四边形AFBD是平行四边形,
∵AB=AC,BD=CD(三线合一),
∴∠ADB=90°,
∴?AFBD是矩形.
(3)△ABC满足∠BAC=90°,矩形AFBD是正方形;
∵BD=CD,∠BAC=90°,
∴AD=BD,
∴矩形AFBD是正方形.
点评 本题考查了矩形、正方形的判定,全等三角形的判定与性质,平行四边形的判定,明确有一个角是直角的平行四边形是矩形是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2a-b=0 | B. | b>0 | C. | a+b+c>0 | D. | 4a-2b+c<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com