【题目】如图,抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0)两点,与y轴交于点C.
(1)求抛物线的解析式;
(2)若点P在第一象限的抛物线上,且点P的横坐标为t,过点P向x轴作垂线交直线BC于点Q,设线段PQ的长为m,求m与t之间的函数关系式,并求出m的最大值;
(3)在x轴上是否存在点E,使以点B,C,E为顶点的三角形为等腰三角形?如果存在,直接写出E点坐标;如果不存在,请说明理由.
【答案】(1)y=﹣x2+3x+4;(2)m=﹣t2+4t(0<t<4),m的最大值为4;(3)存在,E(﹣4,0)或(0,0)或(4﹣4,0).
【解析】
(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;
(2)将x=0代入抛物线解析式中可求出点C的坐标,根据点B、C的坐标利用待定系数法即可求出直线BC的解析式,由点P的横坐标为t,即可找出点P、Q的坐标,由此即可用含t的代数式表示出PQ的长度,再利用二次函数的性质即可解决最值问题;
(3)①由CO⊥x轴、QD⊥x轴、∠QBD=∠CBO,即可得出△BQD∽△BCO,即存在点E(0,0)使得△BQD∽△BCE;②过点C作EC⊥BC交x轴于点E,由EC⊥BC、QD⊥x轴、∠QBD=∠CBO,即可得出△BQD∽△BEC,再根据点B、C的坐标即可得出∠CBO=45°,利用等腰直角三角形的性质即可得出此时点E的坐标.综上即可得出结论.
(1)∵抛物线y=ax2+3x+c经过A(﹣1,0),B(4,0),
把A、B两点坐标代入上式,解得:a=﹣1,c=4,
故:抛物线y=﹣x2+3x+4;
(2)∵将x=0代入抛物线的解析式得:y=4,∴C(0,4),
把将B(4,0),C(0,4)代入抛物线方程,
解得:直线BC的解析式为:y=﹣x+4.
过点P作x的垂线PQ,如图所示:
∵点P的横坐标为t,∴P(t,﹣t2+3t+4),Q(t,﹣t+4).
∴PQ=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t.
∴m=﹣t2+4t=﹣(t﹣2)2+4(0<t<4).
∴当t=2时,m的最大值为4;
(3)存在.如图所示:
当EC=BE时,E在原点O,此时点E(0,0),
当BC=CE时,E在点B关于y轴对称点,此时点E(﹣4,0),
当BC=BE时,BE=4,此时E(4﹣4,0)
即:E(﹣4.0)或(0,0)或(4﹣4,0).
科目:初中数学 来源: 题型:
【题目】如图,在中,,,分别为,边上的高,连接,过点作与点,为中点,连接,.
(1)如图,若点与点重合,求证:;
(2)如图,请写出与之间的关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两位同学做抛骰子(均匀正方体形状)实验,他们共抛了60次,出现向上点数的次数如表:
向上点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现次数 | 8 | 10 | 7 | 9 | 16 | 10 |
(1)计算出现向上点数为6的频率.
(2)丙说:“如果抛600次,那么出现向上点数为6的次数一定是100次.”请判断丙的说法是否正确并说明理由.
(3)如果甲乙两同学各抛一枚骰子,求出现向上点数之和为3的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A、B两点,交y轴于点C,点C关于抛物线对称轴的对称点为点D.
(1)求线段AC的长度;
(2)P为线段BC上方抛物线上的任意一点,点E为(0,﹣1),一动点Q从点P出发运动到y轴上的点G,再沿y轴运动到点E.当四边形ABPC的面积最大时,求PG+GE的最小值;
(3)将线段AB沿x轴向右平移,设平移后的线段为A'B',直至A'P平行于y轴(点P为第2小问中符合题意的P点),连接直线CB'.将△AOC绕着O旋转,设旋转后A、C的对应点分别为A'、C',在旋转过程中直线A'C'与y轴交于点M,与线段CB'交于点N.当△CMN是以MN为腰的等腰三角形时,写出CM的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,已知点的坐标是,点的坐标是,
(1)图中点的坐标是________.
(2)点关于轴对称的点的坐标是______,并作出四边形.
(3)求四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是直线CD上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)求PE的长最大时m的值.
(3)Q是平面直角坐标系内一点,在(2)的情况下,以PQCD为顶点的四边形是平行四边形是否存在?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为(4,0)、(0,4),P是△AOB外接圆上的一点,且∠AOP=45°,则点P的纵坐标为( )
A. +1 B. -1 C. 2+3 D. 2+2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com