精英家教网 > 初中数学 > 题目详情

【题目】随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:
(1)A型自行车去年每辆售价多少元?
(2)该车行今年计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍.已知,A型车和B型车的进货价格分别为1500元和1800元,计划B型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?

【答案】
(1)解:设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由题意,得

=

解得:x=2000.

经检验,x=2000是原方程的根.

答:去年A型车每辆售价为2000元


(2)解:设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得

y=(1800﹣1500)a+(2400﹣1800)(60﹣a),

y=﹣300a+36000.

∵B型车的进货数量不超过A型车数量的两倍,

∴60﹣a≤2a,

∴a≥20.

∵y=﹣300a+36000.

∴k=﹣300<0,

∴y随a的增大而减小.

∴a=20时,y最大=30000元.

∴B型车的数量为:60﹣20=40辆.

∴当新进A型车20辆,B型车40辆时,这批车获利最大


【解析】(1)设去年A型车每辆售价x元,则今年售价每辆为(x﹣200)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:

租金(单位:元/台时)

挖掘土石方量(单位:m3/台时)

甲型挖掘机

100

60

乙型挖掘机

120

80


(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(-3x-4y)(3x-4y= ______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车队要把4000吨货物运到雅安地震灾区(方案定后,每天的运量不变)。
(1)从运输开始,每天运输的货物吨数n(单位:吨)与运输时间t(单位:天)之间有怎样的函数关系式?
(2)因地震,到灾区的道路受阻,实际每天比原计划少运20%,则推迟1天完成任务,求原计划完成任务的天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形的边长为2,=60°,对角线相交于点O.以点O为坐标原点,分别以所在直线为x轴、y轴,建立如图所示的直角坐标系.以为对角线作菱形菱形,再以为对角线作菱形菱形,再以为对角线作菱形菱形,,按此规律继续作下去,在x轴的正半轴上得到点,......,,则点的坐标为________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,0),B(3,0),C(0,2),CD∥x轴,CD=AB.

(1)求点D的坐标:
(2)四边形OCDB的面积S四边形OCDB
(3)在 y轴上是否存在点P,使SPAB=S四边形OCDB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若方程ax2+bx+c=0(a≠0)中,a,b,c满足a+b+c=0a﹣b+c=0,则方程的根是(  )

A. 1,0 B. ﹣1,0 C. 1,﹣1 D. 无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义运算 = ,若a≠﹣1,b≠﹣1,则下列等式中不正确的是(
A. × =1
B. + =
C.( 2=
D. =1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BO平分∠ABC,CO平分∠ACB,MN过点O,交AB于M,交AC于N,且MN∥BC,若AB=12cm,AC=18cm,则△AMN周长为

查看答案和解析>>

同步练习册答案