【题目】如图,抛物线与轴交于点A(2,0),交轴于点B(0,),直线过点A与y轴交于点C,与抛物线的另一个交点为D,作DE⊥y轴于点E.设点P是直线AD上方的抛物线上一动点(不与点A、D重合),过点P作y轴的平行线,交直线AD于点M,作PN⊥AD于点N.
⑴填空:= ,= ,= ;
⑵探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;
⑶设△PMN的周长为,点P的横坐标为x,求与x的函数关系式,并求出的最大值.
【答案】(1);(2)点P的坐标是(-2,3)和(-4,1.5);(3)当x=-3时,的最大值是15.
【解析】
(1)将A,B两点代入可求出b,c的值,将A点代入可求出k的值;
(2)设出P,M点的坐标,从而得出PM的长,将两函数联立得出点D坐标,可得出CE的长,利用平行四边形的性质可知PM=CE,列出方程求解即可;
(3)利用勾股定理得出DC的长,根据△PMN∽△DCE,得出两三角形周长之比等于相似比,从而得出l与x的函数关系,再利用配方法求出二次函数最值即可.
解:⑴
因为抛物线经过点A(2,0),B(0,),代入抛物线解析式可得:
,解得,所以抛物线解析式为,因为直线
经过点A(2,0),代入直线解析式得:,解得:,所以直线解析式为:,所以;
⑵ 存在;
设P的坐标是(x,),则M的坐标是(x,,)
∴,
解方程 得:,,
∵点D在第三象限,则点D的坐标是(-8,-7.5),
由y=得点C的坐标是(0,-1.5),
∴CE=-1.5-(-7.5)=6,
由于PM∥y轴,所以当PM=CE时四边形PMEC是平行四边形。
即=6,
解这个方程得:x1=-2,x2=-4,符合-8<x<2,
当x=-2时,y=3,当x=-4时,y=1.5,
综上所述:点P的坐标是(-2,3)和(-4,1.5);
⑶ 在Rt△CDE中,DE=8,CE=6 由勾股定理得:,
∴△CDE的周长是24,
∵PM∥y轴,∴△PMN∽△DCE,
∴,即化简整理得:l与x的函数关系式是:
,
因为,∴当x=-3时,的最大值是15.
科目:初中数学 来源: 题型:
【题目】如图1,抛物线与铀交于,与轴交于抛物线的顶点为直线过交轴于.
(1)写出的坐标和直线的解析式;
(2)是线段上的动点(不与重合),轴于设四边形的面积为,求与之间的两数关系式,并求的最大值;
(3)点在轴的正半轴上运动,过作轴的平行线,交直线于交抛物线于连接,将沿翻转,的对应点为.在图2中探究:是否存在点;使得恰好落在轴?若存在,请求出的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD的边长为2cm,∠A=60°,点M从点A出发,以1cm/s的速度向点B运动,点N从点A同时出发,以2cm/s的速度经过点D向点C运动,当其中一个动点到达端点时,另一个动点也随之停止运动.则△AMN的面积y(cm2)与点M运动的时间t(s)的函数的图象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C,D在⊙O上,且BC=CD,过C作CE⊥AD,交AD延长线于E,交AB延长线于F点,
(1)求证:EF是⊙O的切线;
(2)若AB=4ED,求cos∠ABC的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在图1、2中,⊙O过了正方形网格中的格点A、B、C、D,请你仅用无刻度的直尺分别在图1、图2、图3中画出一个满足下列条件的∠P
(1)顶点P在⊙O上且不与点A、B、C、D重合;
(2)∠P在图1、图2、图3中的正切值分别为1、、2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.PA和PB分别与⊙O相切于A,B两点,作直径AC,并延长交PB于点D.连结OP,CB.
(1)求证:OP∥CB;
(2)若PA=12,DB:DC=2:1,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:
填写下表:
中位数 | 众数 | |
随机抽取的50人的社会实践活动成绩单位:分 |
估计光明中学全体学生社会实践活动成绩的总分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,圆内接四边形ABCD,AD=BC,AB是⊙O的直径.
(1)求证:AB∥CD;
(2)如图2,连接OD,作∠CBE=2∠ABD,BE交DC的延长线于点E,若AB=6,AD=2,求CE的长;
(3)如图3,延长OB使得BH=OB,DF是⊙O的直径,连接FH,若BD=FH,求证:FH是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形 ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.
(1)求AO的长;
(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;
(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com