【题目】【探索发现】
如图①,是一张直角三角形纸片,∠B=60°,小明想从中剪出一个以∠B为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为 .
【拓展应用】
如图②,在△ABC中,BC=a,BC边上的高AD=h,矩形PQMN的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,则矩形PQMN面积的最大值为 .(用含a,h的代数式表示)
【灵活应用】
如图③,有一块“缺角矩形”ABCDE,AB=32,BC=40,AE=20,CD=16,小明从中剪出了一个面积最大的矩形(∠B为所剪出矩形的内角),求该矩形的面积.
【实际应用】
如图④,现有一块四边形的木板余料ABCD,经测量AB=50cm,BC=108cm,CD=60cm,且tanB=tanC=,木匠徐师傅从这块余料中裁出了顶点M、N在边BC上且面积最大的矩形PQMN,求该矩形的面积.
【答案】【探索发现】;【拓展应用】;【灵活应用】720;【实际应用】1944.
【解析】
试题分析:【探索发现】:由中位线知EF=BC、ED=AB、由 =可得;
【拓展应用】:由△APN∽△ABC知,可得PN=a﹣PQ,设PQ=x,由S矩形PQMN=PQPN═,据此可得;
【灵活应用】:添加如图1辅助线,取BF中点I,FG的中点K,由矩形性质知AE=EH20、CD=DH=16,分别证△AEF≌△HED、△CDG≌△HDE得AF=DH=16、CG=HE=20,从而判断出中位线IK的两端点在线段AB和DE上,利用【探索发现】结论解答即可;
【实际应用】:延长BA、CD交于点E,过点E作EH⊥BC于点H,由tanB=tanC知EB=EC、BH=CH=54,EH=BH=72,继而求得BE=CE=90,可判断中位线PQ的两端点在线段AB、CD上,利用【拓展应用】结论解答可得.
试题解析:【探索发现】
∵EF、ED为△ABC中位线,∴ED∥AB,EF∥BC,EF=BC,ED=AB,又∠B=90°,∴四边形FEDB是矩形,则 ===,故答案为:;
【拓展应用】
∵PN∥BC,∴△APN∽△ABC,∴,即,∴PN=a﹣PQ,设PQ=x,则S矩形PQMN=PQPN=x(a﹣x)= =,∴当PQ=时,S矩形PQMN最大为,故答案为:;
【灵活应用】
如图1,延长BA、DE交于点F,延长BC、ED交于点G,延长AE、CD交于点H,取BF中点I,FG的中点K,
由题意知四边形ABCH是矩形,∵AB=32,BC=40,AE=20,CD=16,∴EH=20、DH=16,∴AE=EH、CD=DH,在△AEF和△HED中,∵∠FAE=∠DHE,AE=AH,∠AEF=∠HED,∴△AEF≌△HED(ASA),∴AF=DH=16,同理△CDG≌△HDE,∴CG=HE=20,∴BI=(AB+AF)=24,∵BI=24<32,∴中位线IK的两端点在线段AB和DE上,过点K作KL⊥BC于点L,由【探索发现】知矩形的最大面积为×BGBF=×(40+20)×(32+16)=720,答:该矩形的面积为720;
【实际应用】
如图2,延长BA、CD交于点E,过点E作EH⊥BC于点H,∵tanB=tanC=,∴∠B=∠C,∴EB=EC,∵BC=108cm,且EH⊥BC,∴BH=CH=BC=54cm,∵tanB==,∴EH=BH=×54=72cm,在Rt△BHE中,BE==90cm,∵AB=50cm,∴AE=40cm,∴BE的中点Q在线段AB上,∵CD=60cm,∴ED=30cm,∴CE的中点P在线段CD上,∴中位线PQ的两端点在线段AB、CD上,由【拓展应用】知,矩形PQMN的最大面积为BCEH=1944cm2.
答:该矩形的面积为1944cm2.
科目:初中数学 来源: 题型:
【题目】已知数轴上A、B两点对应的数分别为﹣2和8,P为数轴上任意一点且对应的数为x,C为线段PA的中点.
(1)若点P在线段AB上,求2BC﹣BP的值;
(2)若点P在线段AB的延长线上,式子2BC﹣BP的值是定值吗?若是,求出它的值,若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象分别与坐标轴相交于A、B两点(如图所示),与反比例函数的图象相交于点C,OA=3.
(1)求一次函数的解析式和点B的坐标;
(2)作CD⊥x轴,垂足为D,若=1:3,求反比例函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:
(1)本次调查共选取 名居民;
(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;
(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC.AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市场的公平秤如图,把10千克的菜放到秤上,指示盘上的指针转了180°.
(1)如果把2.75千克的菜放在秤上,指针转过多少度?
(2)如果称好0.5千克的菜没有拿走,再把一捆菜放在秤上,指针共转了那么,后放上的这捆菜有多少千克?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com