【题目】如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于点C,过C点作CD⊥AE的延长线于点D,直线CD与射线AB交于点P.
(1)判断直线DP与⊙O的位置关系,并说明理由;
(2)若DC=4,⊙O的半径为5,求PB的长.
【答案】(1)相切,证明详见解析;(2).
【解析】
(1)连结OC,由AC平分∠EAB得到∠1=∠2,加上∠2=∠3,则∠1=∠3,于是可判断OC∥AD,因为CD⊥AD,所以OC⊥CD,则根据切线的判定定理得到DC为圆O切线;
(2)连结BC, 可得Rt△ACD∽Rt△ACB,计算出AD=8, 由OC∥AD,可得 △OPC∽△APD然后利用对应边成比例可计算出PB的长.
(1) 直线DP与⊙O相切,
连结OC,如图,
AC平分 ∠EAB,∠1=∠2,
OA=OC, ∠2=∠3
∠1=∠3,OC∥AD,
CD⊥AD,OC⊥CD,
DP为⊙0切线;
(2)解:连结BC,如图:在Rt△ACD与Rt△ACB,
∠ADC=∠ACB=90,∠1=∠2, Rt△ACD∽Rt△ACB,
,设AD=x,则,
,解得:(舍去),,
即:AD=8,
由(1)得OC∥AD, △OPC∽△APD
,设BP的长为y,可得:
,解得:y=
即BP的长为.
科目:初中数学 来源: 题型:
【题目】如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.
(1)求证:∠AEB=∠ADC;
(2)连接DE,若∠ADC=105°,求∠BED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)______________.
(1)图象的对称轴是直线 x=1
(2)当x>1时,y随x的增大而减小
(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3
(4)当﹣1<x<3时,y<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b经过点A(-5,0),B(-1,4)
(1)求直线AB的表达式;
(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;
(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)一般地,数轴上表示数m和数n的两点之间的距离等于.如果表示数a和的两点之间的距离是5,那么__________;
(2)若数轴上表示数a的点位于与6之间,求的值;
(3)当a取何值时,的值最小,最小值是多少?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分7分) 已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x个,根据小明的方法用来估计袋中白球个数的方程是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知:a=﹣2,b=+2,求代数式a2b﹣ab2的值;
(2)已知实数x、y满足x2+10x++25=0,则(x+y)2019的值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com