精英家教网 > 初中数学 > 题目详情

【题目】1)已知:a2b+2,求代数式a2bab2的值;

2)已知实数xy满足x2+10x++250,则(x+y2019的值是多少?

【答案】14;(2-1

【解析】

1)先对所求的代数式进行因式分解,然后代入求值;

2)根据非负数的性质求得xy的值,然后代入求值即可.

1)∵a2b+2

ab=(2)(+2)=34=﹣1ab22=﹣4

a2bab2abab)=﹣(﹣4)=4

2)∵实数xy满足x2+10x++250

∴(x+52+0

x+50y40

解得,x=﹣5y4

x+y=(﹣5+4=﹣1

∴(x+y2019=(﹣12019=﹣1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABO直径,EO上一点,EAB的平分线ACO于点C,过C点作CDAE的延长线于点D,直线CD与射线AB交于点P

(1)判断直线DPO的位置关系,并说明理由;

(2)若DC=4,⊙O的半径为5,求PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

如果两个正数ab,即a0b0,则有下面的不等式: ,当且仅当ab时取等号,我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.

实例剖析:

已知x0,求式子的最小值.

解:令axb,则由,得当且仅当时,方程两边同时乘x,得到,解得x2,式子有最小值,最小值为4

学以致用:

根据上面的阅读材料回答下列问题:

1)已知x0,则当x__________时,式子取到最小值,最小值为:_______________

2)用篱笆围一个面积为100m的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少米?

3)已知x0,则x取何值时,式子取到最小值,最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:AC是菱形ABCD的对角线,且AC=BC

(1)如图①,点P是△ABC的一个动点,将△ABP绕着点B旋转得到△CBE

①求证:△PBE是等边三角形;

②若BC=5CE=4PC=3,求∠PCE的度数;

(2)连结BDAC于点O,点EOD上且DE=3AD=4,点G是△ADE内的一个动点如图②,连结AGEGDG,求AG+EG+DG的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.

例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.

请你运用所学知识,结合上述材料,解决下列问题:

在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.

(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;

(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;

(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,有四个同样大小的直角三角形,两条直角边分别为ab,斜边为c,拼成一个正方形,中间留有一个小正方形.

1)利用它们之间的面积关系,探索出关于abc的等式;

2)利用(1)中发现的直角三角形中两直角边ab和斜边c之间的关系,完成问题:如图2,在直角△ABC中,∠C90°,且c6a+b8,则△ABC的面积为   

3)如图3所示,CD是直角△ABC中斜边上的高,试证明CD2ADBD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,EF分别是边ABBC的中点,连接AFDE相交于点G,连接CG

1)求证:AF⊥DE

2)求证:CG=CD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB// CDRt△EFG的顶点FG分别落在直线ABCD上,GEAB于点HEFG=90°E=32°

1FGE=    °

2)若GE平分∠FGD,求∠EFB的度数.

查看答案和解析>>

同步练习册答案