精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:

如果两个正数ab,即a0b0,则有下面的不等式: ,当且仅当ab时取等号,我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.

实例剖析:

已知x0,求式子的最小值.

解:令axb,则由,得当且仅当时,方程两边同时乘x,得到,解得x2,式子有最小值,最小值为4

学以致用:

根据上面的阅读材料回答下列问题:

1)已知x0,则当x__________时,式子取到最小值,最小值为:_______________

2)用篱笆围一个面积为100m的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少米?

3)已知x0,则x取何值时,式子取到最小值,最小值是多少?

【答案】(1) (2) 当矩形的长、宽各为10米时,所用篱笆最短,最短为40米;(3) x=3时,y取得最小值为4

【解析】

(1)a=2xb=,这两个数都是正数,根据阅读材料就可以直接得到结果;

(2)设这个矩形的长为x米,则宽=面积÷长,即宽为米,则所用的篱笆长等于长加宽的和乘以2,根据阅读材料即可求解;

(3)将原式整理成,根据阅读材料直接求解最小值即可.

解:(1)a=2xb=

已知

当且仅当时,即,式子有最小值.

(2) 设这个矩形的长为x米,所用篱笆的长度为y米,

根据题意得:

由上述性质可知:

此时

解得:x=10

∴当矩形的长、宽各为10米时,所用篱笆最短,最短为40米.

(3)

时,y取得最小值为4

∴当x=3时,y取得最小值为4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+cx轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)______________

(1)图象的对称轴是直线 x=1

(2)当x>1时,yx的增大而减小

(3)一元二次方程ax2+bx+c=0的两个根是﹣13

(4)当﹣1<x<3时,y<0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)解不等式

2)解不等式组:并将其解集表示在如图所示的数轴上

3,并写出不等式组的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】班级元旦晚会上,主持人给大家带来了一个有奖竞猜题,他在一个不透明的袋子中放了若干个形状大小完全相同的白球,想请大家想办法估计出袋中白球的个数.数学课代表小明是这样来估计的:他先往袋中放入10个形状大小与白球相同的红球,混匀后再从袋子中随机摸出20个球,发现其中有4个红球.如果设袋中有白球x个,根据小明的方法用来估计袋中白球个数的方程是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.

1)求甲、乙两种商品每件的进价分别是多少元?

2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1△ABC为等腰直角三角形,∠ACB90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于45°).旋转后三角板的一直角边与AB交于点D.在三角板另一直角边上取一点F,使CFCD,线段AB上取点E,使∠DCE45°,连接AFEF.请探究结果:

直接写出∠EAF的度数=__________度;若旋转角∠BCDα°,则∠AEF____________度(可以用含α的代数式表示);

②DEEF相等吗?请说明理由;

(类比探究)

2)如图2△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于30°).旋转后三角板的一直角边与AB交于点D.在三角板斜边上取一点F,使CFCD,线段AB上取点E,使∠DCE30°,连接AFEF

直接写出∠EAF的度数=___________度;

AE1BD2,求线段DE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师提出如下问题:尺规作图:作已知角的角平分线.已知:如图,∠BAC.求作:∠BAC的角平分线AP.

小欣的作法如下:

(1)如图,在平面内任取一点O;

(2)以点O为圆心,AO为半径作圆,交射线AB于点D,交射线AC于点E;

(3)连接DE,过点O作射线OP垂直于线段DE,交⊙O于点P;

(4)过点P作射线AP.

所以射线AP为所求

根据小欣设计的尺规作图过程,

(1)使用直尺和圆规,补全图形;(保留作图痕迹)

(2)完成下面的证明.

证明:∵OPDE

=______(________________________)(填推理的依据),

∴∠BAP=______ (________________________)(填推理的依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)已知:a2b+2,求代数式a2bab2的值;

2)已知实数xy满足x2+10x++250,则(x+y2019的值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知yx的一次函数,且当x=-4y=9;当x=6时,y=-1

1)求这个一次函数的解析式和自变量x的取值范围;

2)当x=-时,函数y的值;

3)当y=7时,自变量x的值.

查看答案和解析>>

同步练习册答案