【题目】(1)解不等式
(2)解不等式组:并将其解集表示在如图所示的数轴上
(3),并写出不等式组的整数解.
【答案】(1);(2);(3);整数解为-1,0,1,2,3
【解析】
(1)不等式去括号、移项合并、系数化为1即可求出不等式的解集;
(2)解第一个不等式得x≤1,解第二个不等式得x<4,然后根据小小取小得到不等式组的解集.再在数轴上表示出不等式的解集即可.
(3) 将不等式组中的不等式分别记作①和②,分别求出不等式①和②的解集,找出两解集的公共部分,确定出不等式组的解集,在不等式组解集中找出满足范围的整数,即可得到原不等式组的整数解;
解:(1)
去括号 2x+2-1≥3x+2
移项 2x-3x≥2-2+1
合并同类项,系数化为1得 x≤-1
(2)
由得 x≤1
由 x<4
所以不等式组的解集为: x≤1.
其解集表示在数轴上如下:
(3)
由得 x≥-1
由 x≤3
所以不等式组的解集为:-1≤ x≤3.
所以这个不等式组的整数解为:-1、0、1、2、3.
故答案为(1);(2);(3)整数解为-1,0,1,2,3.
科目:初中数学 来源: 题型:
【题目】如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则
①二次函数的最大值为a+b+c;
②a﹣b+c<0;
③b2﹣4ac<0;
④当y>0时,﹣1<x<3,其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于点C,过C点作CD⊥AE的延长线于点D,直线CD与射线AB交于点P.
(1)判断直线DP与⊙O的位置关系,并说明理由;
(2)若DC=4,⊙O的半径为5,求PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:
①△BO′A可以由△BOC绕点B逆时针旋转60°得到;&
②点O与O′的距离为4;
③∠AOB=150°;
④四边形AOBO′的面积为6+3 ;
⑤S△AOC+S△AOB=6+.
其中正确的结论是_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,B在反比例函数(x>0)的图象上,点C,D在反比例函数(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A. 3 B. 4 C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+b的图象与反比例函数y=的图象交于A(3,1),B(﹣,n)两点.
(1)求该反比例函数的解析式;
(2)求n的值及该一次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式: ,当且仅当a=b时取等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.
实例剖析:
已知x>0,求式子的最小值.
解:令a=x,b=,则由,得当且仅当时,方程两边同时乘x,得到,解得x=2,式子有最小值,最小值为4.
学以致用:
根据上面的阅读材料回答下列问题:
(1)已知x>0,则当x=__________时,式子取到最小值,最小值为:_______________
(2)用篱笆围一个面积为100m的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少米?
(3)已知x>0,则x取何值时,式子取到最小值,最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.
(1)求证:AF⊥DE;
(2)求证:CG=CD.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com