【题目】已知y是x的一次函数,且当x=-4,y=9;当x=6时,y=-1.
(1)求这个一次函数的解析式和自变量x的取值范围;
(2)当x=-时,函数y的值;
(3)当y=7时,自变量x的值.
科目:初中数学 来源: 题型:
【题目】阅读材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式: ,当且仅当a=b时取等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述的不等式可以表述为:两个正数的算术平均数不小于(即大于或等于)他们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具.
实例剖析:
已知x>0,求式子的最小值.
解:令a=x,b=,则由,得当且仅当时,方程两边同时乘x,得到,解得x=2,式子有最小值,最小值为4.
学以致用:
根据上面的阅读材料回答下列问题:
(1)已知x>0,则当x=__________时,式子取到最小值,最小值为:_______________
(2)用篱笆围一个面积为100m的长方形花园,问这个长方形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少米?
(3)已知x>0,则x取何值时,式子取到最小值,最小值是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别是边AB、BC的中点,连接AF、DE相交于点G,连接CG.
(1)求证:AF⊥DE;
(2)求证:CG=CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+x1的图象与x轴交于A、B两点,与y轴交于点C,连接AC,点P是抛物线上的一个动点,记△APC的面积为S,当S=2时,相应的点P的个数是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某项研究表明,大拇指与小拇指尽量张开时,两指尖的距离称为指距.如表是测得的指距与身高的一组数据:
指距d(cm) | 19 | 20 | 21 |
身高h(cm) | 151 | 160 | 169 |
(1)你能确定身高h与指距d之间的函数关系式吗?
(2)若某人的身高为196cm,一般情况下他的指距应是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线AB与轴交于点A,与轴交于点B,与直线OC:交于点C.
(1)若直线AB解析式为,
①求点C的坐标;
②求△OAC的面积.
(2)如图2,作的平分线ON,若AB⊥ON,垂足为E, OA=4,P、Q分别为线段OA、OE上的动点,连结AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB// CD,Rt△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,∠EFG=90°,∠E=32°.
(1)∠FGE= °
(2)若GE平分∠FGD,求∠EFB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则DE= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com