【题目】如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AGBD交CB的延长线于点G.
(1)求证:DEBF;
(2)当∠G为何值时?四边形DEBF是菱形,请说明理由.
【答案】(1)详见解析;(2)当∠G=90°时,四边形DEBF是菱形,理由详见解析
【解析】
(1)根据已知条件证明DFBE,DF=BE,从而得出四边形DEBF为平行四边形,即可证明DEBF;
(2)当∠G=90°时,四边形DEBF是菱形.先证明BF=DC=DF,再根据邻边相等的平行四边形是菱形,从而得出结论.
证明:(1)在□ABCD中,ABCD,AB=CD ,
∵E、F分别为边AB、CD的中点,
∴DF=DC,BE=AB,
∴DFBE,DF=BE,
∴四边形DEBF为平行四边形,
∴DEBF
(2)当∠G=90°时,四边形DEBF是菱形.
理由:∵ AGBD ,
∴ ∠DBC=∠G=90°,
∴ 为直角三角形,
又∵F为边CD的中点,
∴BF=DC=DF
∵四边形DEBF为平行四边形,
∴四边形DEBF为菱形
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于点,与y轴交于点B,抛物线经过点.
求k的值和抛物线的解析式;
为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点.
若以O,B,N,P为顶点的四边形OBNP是平行四边形时,求m的值.
当 时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△PAB内接于⊙O,ABCD的边AD是⊙O的直径,且∠C=∠APB,连接BD.
(1)求证:BC是⊙O的切线.
(2)若BC=2,∠PBD=60°,求与弦AP围成的阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC是弦,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)若AB=10,AC=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线l1:y=﹣2x+5与y轴交于点B,直线l2:y=kx+b与x轴交于点D(1,0),与y轴交于点C,两直线交于点A(2,1).
(1)求直线l2的函数解析式.
(2)求两直线与y轴围成的三角形的面积.
(3)点P为l1上一动点,点Q为l2上一动点,点E(0,2),若以BE为一边,且以点B,E,P,Q为顶点的四边形为平行四边形,直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣4与x轴交于点A,以OA为斜边在x轴上方作等腰Rt△OAB,并将Rt△AOB沿x轴向右平移,当点B落在直线y=x﹣4上时,Rt△OAB扫过的面积是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.
(1)求证:CF=DF;
(2)连接OF,若AB=10,BC=6,求线段OF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com