【题目】如图,B是的半径OA上的一点(不与端点重合),过点B作OA的垂线交于点C,D,连接OD,E是上一点,,过点C作的切线l,连接OE并延长交直线l于点F.
(1)①依题意补全图形.
②求证:∠OFC=∠ODC.
(2)连接FB,若B是OA的中点,的半径是4,求FB的长.
【答案】(1)①补图见解析;②证明见解析;(2)FB=.
【解析】
(1)①根据题意,补全图形即可;
②由CD⊥OA可得∠ODC+∠AOD=90°,根据垂径定理可得,利用等量代换可得,根据圆周角定理可得∠EOC=∠AOD,由切线性质可得OC⊥FC,可得∠OFC+∠FOC=90°,即可证明∠OFC=∠ODC;
(2)连接BF,作BG⊥l于G,根据OB=OA,可得∠OCB=30°,利用勾股定理可求出BC的长,根据垂径定理可得CD的长,由(1)可知∠OFC=∠ODC,可得FC=CD,由BG⊥l,OC⊥l可得OC//BG,根据平行线的性质可得∠CBG=30°,根据含30°角的直角三角形的性质可求出CG的长,利用勾股定理可求出BG的长,即可求出FG的长,利用勾股定理求出FB的长即可.
(1)①延长OE,交直线l于F,如图即为所求,
②∵OA⊥CD,OA为⊙O半径,
∴,
∵,
∴,
∴∠EOC=∠AOD,
∵FC是⊙O的切线,
∴OC⊥FC,
∴∠OFC+∠FOC=90°,
∴∠OFC=∠ODC.
(2)连接BF,作BG⊥l于G,
∵B是OA的中点,⊙O半径为4,
∴OB=OA=OC=2,
∵OA⊥CD,
∴∠OCD=30°,BC===,
∴CD=2BC=,
由(1)可知∠OFC=∠ODC,
∴FC=CD=,
∵BG⊥l,OC⊥l,
∴OC//BG,
∴∠CBG=∠OCD=30°,
∴CG=BC=,BG==3,
∴FG=FC+CG=,
∴BF==.
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB为直径,∠BAC=60°,延长BA至点P使AP=AC, 作CD平分∠ACB交AB于点E,交⊙O于点D. 连结PC,BD.
(1)求证:PC为⊙O的切线;
(2)求证:BD=PA;
(3)若PC=,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,点D是AB上一点,以AD为直径作⊙O交AC于E,与BC相切于点F,连接AF.
(1)求证:∠BAF=∠CAF;
(2)若AC=3,BC=4,求BD和CE的长;
(3)在(2)的条件下,若AF与DE交于H,求FHFA的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE,连接DE并延长交射线AP于点F,连接BF
(1)若,直接写出的大小(用含的式子表示).
(2)求证:.
(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数的图象与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为P.
(1)直接写出点A,C,P的坐标.
(2)画出这个函数的图象.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,D是边BC上一点,以点A为圆心,AD长为半径作弧,如果与边BC有交点E(不与点D重合),那么称为的A-外截弧.例如,图中是的一条A-外截弧.在平面直角坐标系xOy中,已知存在A-外截弧,其中点A的坐标为,点B与坐标原点O重合.
(1)在点,,,中,满足条件的点C是_______.
(2)若点C在直线上.
①求点C的纵坐标的取值范围.
②直接写出的A-外截弧所在圆的半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小石设计的“过圆上一点作圆的切线”的尺规作图的过程.
已知:如图1,及上一点P.
求作:直线PQ,使得PQ与相切.
作法:如图2,
①连接PO并延长交于点A;
②在上任取一点B(点P,A除外),以点B为圆心,BP长为半径作,与射线PO的另一个交点为C.
③连接CB并延长交于点Q.
④作直线PQ;
所以直线PQ就是所求作的直线.
根据小石设计的尺规作图的过程.
(1)使用直尺和圆规,补全图形:(保留作图痕迹)
(2)完成下面的证明.
证明:∵CQ是的直径,
∴________(________________)(填推理的依据)
∴.
又∵OP是的半径,
∴PQ是的切线(________________)(填推理的依据)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A=60°,∠ABC=45°,AB=4,点D为AC上一动点,以BD为直径的⊙O交BC于点E,交AB于点F,则EF的最小值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某兴趣小组借无人机航拍测量湖AB的宽度,如图,当无人机位于C处时,从湖边A处测得C处的仰角∠CAB=60°,当无人机沿水平方向飞行至D处时,从湖边B处测得D处的仰角∠DBA=45°,且AC=CD=60m.
(1)求这架无人机的飞行高度.(结果保留根号)
(2)求湖的宽度AB.(结果保留根号)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com