【题目】某电信公司有A、B两种计费方案:月通话费用y(元)与通话时间x(分钟)的关系,如图所示,下列说法中正确的是( )
A.月通话时间低于200分钟选B方案划算
B.月通话时间超过300分钟且少于400分钟选A方案划算
C.月通话费用为70元时,A方案比B方案的通话时间长
D.月通话时间在400分钟内,B方案通话费用始终是50元
【答案】D
【解析】
根据通话时间少于200分钟时,A、B两方案的费用可判断选项A;根据300<x<400时,两函数图象可判断选项B;根据月通话费用为70元时,比较图象的横坐标大小即可判断选项C;根据x≤400,根据图象的纵坐标可判断选项D.
根据图象可知,当月通话时间低于200分钟时,A方案通话费用始终是30元,B方案通话费用始终是50元,故选项A不合题意;
当300<x<400时,A方案通话费用大于70元,B方案通话费用始终是50元,故选项B不合题意;
当月通话费用为70元时,A方案通话费时间为300分钟,B方案通话费时间大于400分钟,故选项C不合题意;
当x≤400时,B方案通话费用始终是50元.故选项D符合题意.
故选D.
科目:初中数学 来源: 题型:
【题目】观察下面一列数,探求其规律:
(1)请问第7个,第8个,第9个数分别是什么?
(2)第2007个数是什么?用n的代数式表示这一规律;
(3)如果这列数无限排列下去,越来越接近哪一个数?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=Rt∠,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A(2,3)、B(6,3),连接AB.如果对于平面内一点P,线段AB上都存在点Q,使得PQ≤1,那么称点P是线段AB的“附近点”.
(1)请判断点D(4.5,2.5)是否是线段AB的“附近点”;
(2)如果点H (m,n)在一次函数的图象上,且是线段AB的“附近点”,求m的取值范围;
(3)如果一次函数y=x+b的图象上至少存在一个“附近点”,请直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( )
分数 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
人数 | 2 | 4 | 3 | 8 | 10 | 9 | 6 | 3 | 1 |
A. 该组数据的众数是24分
B. 该组数据的平均数是25分
C. 该组数据的中位数是24分
D. 该组数据的极差是8分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上有三个点A、B、C,请回答下列问题.
(1)A、B、C三点分别表示 、 、 ;
(2)将点B向左移动3个单位长度后,点B所表示的数是 ;
(3)将点A向右移动4个单位长度后,点A所表示的数是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设x1、x2是方程的两根,且x12+x22=22+x1x2,求实数m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com