【题目】如图是一张矩形纸片ABCD,已知AB=8,AD=6,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在矩形ABCD的某一条边上,则等腰三角形AEP的底边上的高的长是_____.
【答案】或或6
【解析】
分情况讨论:①当AP=AE=5时,则△AEP是等腰直角三角形,得出底边PE=AE=5,由等腰直角三角形的性质可求AH的长;
②当P'E=AE=5时,求出BE,由勾股定理求出P'B,再由勾股定理求出AP',由锐角三角函数可求EM的长;
③当P'A=P'E时,由平行线间距离处处相等,可求AD=6,即可得出结论.
解:①当AP=AE=5时,如图所示:过点A作AH⊥PE于H,
∵∠BAD=90°,
∴△AEP是等腰直角三角形,
∴底边PE=AE=5,
∵AH⊥PE,△AEP是等腰直角三角形,
∴AH=PE=;
②当P'E=AE=5时,
∵BE=AB﹣AE=8﹣5=3,∠B=90°,
∴P'B==4,
∴底边AP'===4,
∵tan∠P'AB=,
∴,
∴ME=;
③当P'A=P'E时,
∵AB∥CD,
∴底边AE的高为AD=6;
综上所述:等腰三角形AEP的底边上的高的长是或或6.
故答案为:或或6.
科目:初中数学 来源: 题型:
【题目】如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=30°,点A1在ON上,点C1在OM上,OA1=A1C1=2,C1B1⊥ON于点B1,以A1B1和B1C1为邻边作矩形A1B1C1D1,点A1,A2关于点B对称,A2C2∥A1C1交OM于点C2,C2B2⊥ON于点B2,以A2B2和B2C2为邻边作矩形A2B2C2D2,连接D1D2,点A2,A3关于点B2对称,A3C3∥A2C2交OM于点C3,C3B3⊥ON于点B3,以A3B3和B3C3为邻边作矩形A3B3C3D3,连接D2D3,……依此规律继续下去,则DnDn+1=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】[阅读理解]
构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.
例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.
[经验运用]
请运用上述阅读材料中所积累的经验和方法解决下列问题.
(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.
求证:①G是EF的中点;
②CG=BE;
[拓展延伸]
(2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;
(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,( 2)中的其它条件不变,请直接写出GH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.
(1)求证:PE是⊙O的切线;
(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;
(3)若tan∠P=,试求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,楼房BD的前方竖立着旗杆AC.小亮在B处观察旗杆顶端C的仰角为45°,在D处观察旗杆顶端C的俯角为30°,楼高BD为20米.
(1)求∠BCD的度数;
(2)求旗杆AC的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案:一户家庭的月均用水量不超过(单位:)的部分按平价收费,超出的部分按议价收费.为此拟召开听证会,以确定一个合理的月均用水量标准.通过抽样,获得了前一年1000户家庭每户的月均用水量(单位:),将这1000个数据按照,,…,分成8组,制成了如图所示的频数分布直方图.
(1)写出的值,并估计这1000户家庭月均用水量的平均数;(同一组中的数据以这组数据所在范围的组中值作代表)
(2)假定该市政府希望70%的家庭的月均用水量不超过标准,请判断若以(1)中所求得的平均数作为标准是否合理?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(抗击疫情)为了遏制新型冠状病毒疫情的蔓延势头,各地教育部门在推迟各级学校开学时间的同时提出“听课不停学”的要求,各地学校也都开展了远程网络教学,某校集中为学生提供四类在线学习方式:在线阅读、在线听课、在线答疑、在线讨论,为了了解学生的需求,该校通过网络对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据结果绘制成如下两幅不完整的统计图。
(1)本次调查的人数有多少人?
(2)请补全条形图;
(3)请求出“在线答疑”在扇形图中的圆心角度数;
(4)小宁和小娟都参加了远程网络教学活动,请求出小宁和小娟选择同一种学习方式的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com