精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,E点是正方形ABCD的边AB上一点,AB4DE6,△DAE逆时针旋转后能够与△DCF重合.

1)旋转中心是   .旋转角为   度.

2)请你判断△DFE的形状,并说明理由.

3)求四边形DEBF的周长和面积.

【答案】1D90;(2) △DFE的形状是等腰直角三角形,见解析;(32016

【解析】

1)由题意可知要确定旋转中心及旋转的角度,首先确定哪是对应点,即可确定旋转中心以及旋转角;

2)根据旋转的性质,可以得到旋转前后的两个图形全等,以及旋转角的定义即可作出判断;

3)由题意根据△DAE≌△DCF,可以得到:AECFDEDF,则四边形DEBF的周长就是正方形的三边的和与DE的和.

解:(1)由题意可知旋转中心是点D

即为旋转角为90度.

2)根据旋转的性质可得:△DAE≌△DCF,则DEDF∠EDF∠ADC90°

△DFE的形状是等腰直角三角形.

3)四边形DEBF的周长是BE+BC+CF+DF+DEAB+BC+DE+DF4+4+6+6=20

由题意可知四边形DEBF的面积等于正方形ABCD的面积=16

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:

(1)甲,乙两组工作一天,商店各应付多少钱?

(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?

(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.

1)请你帮助学校设计所有可行的租车方案.

2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.

(l)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.

(2)性质探宄:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.

猜想结论:(要求用文字语言叙述)

写出证明过程(先画出图形,写出已知、求证)

(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科技改变世界.2017年底,快递分拣机器人从微博火到了朋友圈.据介绍,这些机器人不仅可以自动规划最优路线,将包裹准确地放入相应的路口,还会感应避让障碍物,自动归队取包裹,没电的时候还会自己找充电桩充电.某快递公司启用40A种机器人、150B种机器人分拣快递包裹,AB两种机器人全部投入工作,1小时共可以分拣0.77万件包裹;若全部A种机器人工作1.5小时,全部B种机器人工作2小时,一共可以分拣1.38万件包裹.

1)求两种机器人每台每小时各分拣多少件包裹?

2)为进一步提高效率,快递公司计划再购进AB两种机器人共100台.若要保证新购进的这批机器人每小时的总分拣量不少于5500件,求至少应购进A种机器人多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座。

1)计划到2020年底,全省5G基站的数量是多少万座?;

2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按要求完成下列证明

已知:如图,ABCD直线AECD于点CBAC+CDF=180°.

求证:AEDF.

证明: ABCD____________________________

∴∠BAC=DCE__________________________________________________________________________.

BAC+CDF=180°(已知),

____________ +CDF=180°____________________________________.

AEDF______________________________________________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.

(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.

①求证:BE=BF;

②请判断△AGC的形状,并说明理由.

(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG,判断△AGC的形状.(直接写出结论不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,平分于点上一点,经过点分别交于点,连接于点.

(1)求证:的切线;

(2)设,试用含的代数式表示线段的长;

(3)若,求的长.

查看答案和解析>>

同步练习册答案