精英家教网 > 初中数学 > 题目详情

【题目】筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为的筒车按逆时针方向每分钟转圈,筒车与水面分别交于点,筒车的轴心距离水面的高度长为,简车上均匀分布着若干个盛水筒.若以某个盛水筒刚浮出水面时开始计算时间.

1)经过多长时间,盛水筒首次到达最高点?

2)浮出水面3.4秒后,盛水筒距离水面多高?

3)若接水槽所在直线是的切线,且与直线交于点.求盛水筒从最高点开始,至少经过多长时间恰好在直线上.(参考数据:

【答案】127.4秒;(20.7m;(37.6

【解析】

1)先根据筒车筒车每分钟旋转的速度计算出筒车每秒旋转的速度,再利用三角函数确定,最后再计算出所求时间即可;

2)先根据时间和速度计算出,进而得出,最后利用三角函数计算出,从而得到盛水筒距离水面的高度;

3)先确定当在直线上时,此时是切点,再利用三角函数得到

,从而计算出,最后再计算出时间即可.

1)如图1,由题意得,筒车每秒旋转

连接,在中,,所以

所以(秒).

答:盛水筒首次到达最高点所需时间为27.4秒.

2)如图2,盛水筒浮出水面3.4秒后,此时

所以

过点,垂足为,在中,

答:此时盛水筒距离水面的高度

3)如图3,因为点上,且相切,

所以当在直线上时,此时是切点.

连接,所以

中,,所以

中,,所以

所以

所以需要的时间为(秒).

答:从最高点开始运动,7.6秒后盛水筒恰好在直线上.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分):

项目人员

阅读能力

思维能力

表达能力

93

86

73

95

81

79

1)根据实际需要,公司将阅读、思维和表达能力三项测试得分按352的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?

2)公司按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为:85≤x90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游泳馆普通票价20/暑假为了促销新推出两种优惠卡

金卡售价600/每次凭卡不再收费

银卡售价150/每次凭卡另收10

暑假普通票正常出售两种优惠卡仅限暑假使用不限次数.设游泳x次时所需总费用为y

(1)分别写出选择银卡、普通票消费时,yx之间的函数关系式

(2)在同一坐标系中若三种消费方式对应的函数图象如图所示请求出点A、B、C的坐标

(3)请根据函数图象直接写出选择哪种消费方式更合算

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】近日,在公安部交通管理局部署下,全国各地交警都在大力开展|一盔一带安全守护行动,为了解市民对骑电动车戴头盔的赞同情况,某课题小组随机调查了部分市民,并根据调查结果绘制了尚不完整的统计图.

根据以上统计图回答一下问题:

1)这次调查的市民共_______人;

2)若选择的人数是选择的人数的3倍,则扇形统计图中,扇形的圆心角度数是______

3)补全条形统计图;

4)若该市约有80万人,请估计安全意识淡薄(选择DE)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中有一直角三角形AOBO为坐标原点,OA=1tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点ABC

1)求抛物线的解析式;

2)若点P是第二象限内抛物线上的动点,其横坐标为t

设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求出当△CEF△COD相似时,点P的坐标;

是否存在一点P,使△PCD的面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四位同学在研究函数是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,,已知这四位同学中只有一位发现的结论是错误的,则该同学是(

A.B.C.D.

查看答案和解析>>

同步练习册答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�