【题目】已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.
(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.
【答案】(1)证明见解析;(2)BM=ME=;(3)证明见解析.
【解析】
(1)如图1,延长AB交CF于点D,证明BM为△ADF的中位线即可.
(2)如图2,作辅助线,推出BM、ME是两条中位线.
(3)如图3,作辅助线,推出BM、ME是两条中位线:BM=DF,ME=AG;然后证明△ACG≌△DCF,得到DF=AG,从而证明BM=ME.
(1)如图1,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD.
∴点B为线段AD的中点.
又∵点M为线段AF的中点,
∴BM为△ADF的中位线.
∴BM∥CF.
(2)如图2,延长AB交CF于点D,则易知△BCD与△ABC为等腰直角三角形,
∴AB=BC=BD=a,AC=AD=a,
∴点B为AD中点,又点M为AF中点.
∴BM=DF.
分别延长FE与CA交于点G,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=GE=2a,CG=CF=a.
∴点E为FG中点,又点M为AF中点.
∴ME=AG.
∵CG=CF=a,CA=CD=a,∴AG=DF=a.
∴BM=ME=.
(3)如图3,延长AB交CE于点D,连接DF,则易知△ABC与△BCD均为等腰直角三角形,
∴AB=BC=BD,AC=CD.
∴点B为AD中点.
又点M为AF中点,∴BM=DF.
延长FE与CB交于点G,连接AG,则易知△CEF与△CEG均为等腰直角三角形,
∴CE=EF=EG,CF=CG.
∴点E为FG中点.
又点M为AF中点,∴ME=AG.
在△ACG与△DCF中,∵,
∴△ACG≌△DCF(SAS).
∴DF=AG,∴BM=ME.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)和点B,化简的结果为: ①c;②;③b﹣a;④a﹣b+2c.其中正确的有( )
A. 一个 B. 两个 C. 三个 D. 四个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.观察下面的点阵图和相应的等式,探究其中的规律:
(1)下图反映了任何一个三角形数是如何得到的,认真观察,并在④后面的横线上写出相应的等式;
(2)通过猜想,写出(1)中与第八个点阵相对应的等式 ;
(3)从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.结合(1)观察下列点阵图,并在⑤看面的横线上写出相应的等式.
(4)通过猜想,写出(3)中与第n个点阵相对应的等式 ;
(5)判断256是不是正方形数,如果不是,说明理由;如果是,256可以看作哪两个相邻的“三角形数”之和?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线与⊙O,AB是⊙O的直径,AD⊥于点D.
(1)如图①,当直线与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;
(2)如图②,当直线与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线
(1)指出图中所有互为补角的角,
(2)求∠MON的度数,
(3)指出图中所有互为余角的角.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学八年级组织了一次“汉字听写比赛”,每班选25名同学参加比赛,成绩分为A,B,C,D四个等级,其中A等级得分为100分,B等级得分为85分,C等级得分为75分,D等级得分为60分,语文教研组将八年级一班和二班的成绩整理并绘制成如下的统计图,请根损换供的信息解答下列问题.
(1)把一班比赛成统计图补充完整;
(2)填表:
平均数(分) | 中位数(分) | 众数(分) | |
一班 | a | b | 85 |
二班 | 84 | 75 | c |
表格中:a=______,b=______,c=_______.
(3)请从以下给出的两个方面对这次比赛成绩的结果进行分析:
①从平均数、众数方面来比较一班和二班的成绩;
②从B级以上(包括B级)的人数方面来比较-班和二班的成绩.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出如下定义:如果两个不相等的有理数a,b满足等式a-b=ab.那么称a,b是“关联有理数对”,记作(a,b).如:因为,.所以数对(3,)是“关联有理数对”.
(1)在数对①(1,)、②(-1,0)、③(,)中,是“关联有理数对”的是____________(只填序号);
(2)若(m,n)是“关联有理数对”,则(-m,-n)___________“关联有理数对”(填“是”或“不是”);
(3)如果两个有理数是一对“关联有理数对”,其中一个有理数是5,求另一个有理数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FH⊥AD,垂足为H,连接AF.
(1)求证:FH=ED;
(2)当AE为何值时,△AEF的面积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com