【题目】在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线
与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
![]()
(1)填空:该抛物线的“衍生直线”的解析式为 ,点A的坐标为 ,点B的坐标为 ;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“衍生三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.
【答案】(1)
;(-2,
);(1,0);
(2)N点的坐标为(0,
),(0,
);
(3)E(-1,-
)、F(0,
)或E(-1,
),F(-4,
)
【解析】
(1)由抛物线的“衍生直线”知道二次函数解析式的a即可;(2)过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求出ON的长,可求出N点的坐标;(3)分别讨论当AC为平行四边形的边时,当AC为平行四边形的对角线时,求出满足条件的E、F坐标即可
(1)∵
,a=
,则抛物线的“衍生直线”的解析式为
;
联立两解析式求交点
,解得
或
,
∴A(-2,
),B(1,0);
(2)如图1,过A作AD⊥y轴于点D,
在
中,令y=0可求得x= -3或x=1,
∴C(-3,0),且A(-2,
),
∴AC=![]()
由翻折的性质可知AN=AC=
,
∵△AMN为该抛物线的“衍生三角形”,
∴N在y轴上,且AD=2,
在Rt△AND中,由勾股定理可得
DN=
,
∵OD=
,
∴ON=
或ON=
,
∴N点的坐标为(0,
),(0,
);
![]()
(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,
∴∠ ACK=∠ EFH,
在△ ACK和△ EFH中
![]()
∴△ ACK≌△ EFH,
∴FH=CK=1,HE=AK=
,
∵抛物线的对称轴为x=-1,
∴ F点的横坐标为0或-2,
∵点F在直线AB上,
∴当F点的横坐标为0时,则F(0,
),此时点E在直线AB下方,
∴E到y轴的距离为EH-OF=
-
=
,即E的纵坐标为-
,
∴ E(-1,-
);
当F点的横坐标为-2时,则F与A重合,不合题意,舍去;
②当AC为平行四边形的对角线时,
∵ C(-3,0),且A(-2,
),
∴线段AC的中点坐标为(-2.5,
),
设E(-1,t),F(x,y),
则x-1=2×(-2.5),y+t=
,
∴x= -4,y=
-t,
-t=-
×(-4)+
,解得t=
,
∴E(-1,
),F(-4,
);
综上可知存在满足条件的点F,此时E(-1,-
)、(0,
)或E(-1,
),F(-4,
)
![]()
科目:初中数学 来源: 题型:
【题目】工厂对某种新型材料进行加工,首先要将其加温,使这种材料保持在一定温度范围内方可加工,如图是在这种材料的加工过程中,该材料的温度y(℃)时间x(min)变化的数图象,已知该材料,初始温度为15℃,在温度上升阶段,y与x成一次函数关系,在第5分钟温度达到60℃后停止加温,在温度下降阶段,y与x成反比例关系.
(1)写出该材料温度上升和下降阶段,y与x的函数关系式:
①上升阶段:当0≤x≤5时,y= ;
②下降阶段:当x>5时,y .
(2)根据工艺要求,当材料的温度不低于30℃,可以进行产品加工,请问在图中所示的温度变化过程中,可以进行加工多长时间?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的标价为500元/件,经过两次降价后的价格为405元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为400元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3200元.问第一次降价后至少要售出该种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
![]()
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△
C;平移△ABC,若A的对应点
的坐标为(0,4),画出平移后对应的△
;
(2)若将△
C绕某一点旋转可以得到△
,请直接写出旋转中心的坐标;
(3)在
轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G.
![]()
(1)证明:△ADG≌△DCE;(2)连接BF,证明:AB=FB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.
(1)求此抛物线的解析式.
(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=x+m与这个新图象有四个交点时,m的取值范围是_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c,当x=3时,y有最小值﹣4,且图象经过点(﹣1,12).
(1)求此二次函数的解析式;
(2)该抛物线交x轴于点A,B(点A在点B的左侧),交y轴于点C,在抛物线对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com