【题目】如图,点是坐标原点,点是反比例函数图像上一点,点在轴上,,四边形是平行四边形,交反比例函数图像于点.
(1)平行四边形的面积等于______;
(2)设点横坐标为,试用表示点的坐标;(要有推理和计算过程)
(3)求的值;
(4)求的最小值.
【答案】(1);(2);(3);(4)的最小值为.
【解析】
(1)如图,作于,设.先证AB=2m,再根据反比例函数的几何意义求出mn=6,然后根据图形即可确定平行四边形的面积;
(2)由(1)可得CD=AB=2m,再根据四边形是平行四边形,用m表示出C的坐标,进而得到B的坐标;然后再求出直线BC的解析式,并与联立,即可确定点E的坐标;
(3)作轴于,轴于.利用平行线分线段成比例定理列方程求解即可;.
(4)由(3)可知,再求出AD的最小值即可.
解:(1)如图,作于,设.
∵,,
∴,
∵点在上,∴,
∴;
(2)由题意,
由(1)可知,
∵四边形是平行四边形,
∴,
∴.
∵,,
∴直线的解析式为,
由,解得或(舍弃),
∴;
(3)作轴于,轴于.
∵,
∴;
(4)∵
∴,
要使得最小,只要最小,
∵,
∴的最小值为,
∴的最小值为.
科目:初中数学 来源: 题型:
【题目】如图1,在中,,是的外接圆,过点作交于点,连接交于点,延长至点,使,连接.
(1)求证:;
(2)求证:是的切线;
(3)如图2,若点是的内心,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某数学活动小组在一次活动中,对一个数学问题做了如下研究:
(问题发现)(1)如图①,在等边三角形ABC中,点M是BC边上任意一点,连接AM,以AM为边作等边三角形AMN,连接CN,则∠ABC和∠ACN的数量关系为 ;
(变式探究)(2)如图②,在等腰三角形ABC中,AB=BC,点M是BC边上任意一点(不含端点B,C,连接AM,以AM为边作等腰三角形AMN,使∠AMN=∠ABC,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(解决问题)(3)如图③,在正方形ADBC中,点M为BC边上一点,以AM为边作正方形AMEF,点N为正方形AMEF的中心,连接CN,AB,AE,若正方形ADBC的边长为8,CN=,直接写出正方形AMEF的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC是等边三角形,点D为平面内一点,连接DB、DC,∠BDC=120°.
(1)如图①,当点D在BC下方时,连接AD,延长DC到点E,使CE=BD,连接AE.
①求证:△ABD≌△ACE;
②如图②,过点A作AF⊥DE于点F,直接写出线段AF、BD、DC间的数量关系;
(2)若AB=2,DC=6,直接写出点A到直线BD的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列分式方程解应用题:
“5G改变世界,5G创造未来”.2019年9月,全球首个5G上海虹桥火车站,完成了5G网络深度覆盖,旅客可享受到高速便捷的5G网络服务.虹桥火车站中5G网络峰值速率为4G网络峰值速率的10倍.在峰值速率下传输7千兆数据,5G网络比4G网络快630秒,求5G网络的峰值速率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】新冠疫情初期,医用口罩是紧缺物资.某市为降低因购买口罩造成人群聚集的感染风险,通过APP实名预约,以摇号抽签的方式,由市民到指定门店购买口罩.规定:已中签者在本轮摇号结束前不再参与摇号;若指定门店当日市民购买口罩的平均等待时间超过8分钟,则次日必须增派工作人员.
(1)据APP数据统计:第一天有386.5万人进行网上预约,此后每天预约新增4万人,且每天有35.5万人中签,若小明第一天没有中签,则他第二天中签的概率是多少?
(2)该市某区指定A,B两门店每天8:00-22:00时段让中签市民排队购买口罩.图1是A门店某日购买口罩的人数与等待时间的统计图,为了算出A门店某日等待9分钟的人数,小红选择14:00~16:00这个时间段到店进行统计,统计结果见表1,且这个时间段的人数占该店当天等待9分钟人数的.表2是B门店某日购买口罩的人数与等待时间的统计表.请你运用所学的统计知识判断A,B门店次日是否需要增派工作人员.
表1
时间段 | 等待9分钟/人 |
14:00~14:30 | 10 |
14:30~15:00 | 20 |
15:00~15:30 | 15 |
15:30~16:00 | 5 |
表2
等待时间 | ||||
人数/人 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在平面直角坐标系中,直线y1=kx+b与x轴交于点A(4,0),与y轴交于点B(0,3),点C是直线y2=x+5上的一个动点,连接BC,过点C作CD⊥AB于点D.
(1)求直线y1=kx+b的函数表达式;
(2)当BC∥x轴时,求BD的长;
(3)点E在线段OA上,OE=OA,当点D在第一象限,且△BCD中有一个角等于∠OEB时,请直接写出点C的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是矩形,等腰△ODE中,OE=DE,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点B、E在反比例函数y=的图象上,OA=5,OC=1,则△ODE的面积为( )
A.2.5B.5C.7.5D.10
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com