精英家教网 > 初中数学 > 题目详情

【题目】我国古代第一部数学专著《九章算术》中有这样一道题:今有上禾7束,减去其中之实1斗,加下禾2束,则得实10斗.下禾8束,加实1斗和上禾2束,则得实10斗,问上禾、下禾1束得实多少?

译文为:今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10斗,问上等禾和下等禾1捆各能结出多少斗粮食?(斗为体积单位)

【答案】上等禾每捆能结出斗粮食,下等禾每捆能结出斗粮食.

【解析】

设上等禾每捆能结出x斗粮食,下等禾每捆能结出y斗粮食,根据今有上等禾7捆结出的粮食,减去1斗再加上2捆下等禾结出的粮食,共10斗;下等禾8捆结出的粮食,加上1斗和上等禾2捆结出的粮食,共10,即可得出关于xy的二元一次方程组,解之即可得出结论.

解:设上等禾每捆能结出x斗粮食,下等禾每捆能结出y斗粮食,由题意得:

解得:

答:上等禾每捆能结出斗粮食,下等禾每捆能结出斗粮食.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形ABCD是菱形,点A(0,4),B(﹣3,0)反比例函数y=(k为常数,k≠0,x>0)的图象经过点D.

(1)填空:k=_____

(2)已知在y=的图象上有一点N,y轴上有一点M,且四边形ABMN是平行四边形,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面在角坐标系中,抛物线y=x2-2x-3x轴交与点AB(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E

1)连结BD,点M是线段BD上一动点(点M不与端点BD重合),过点MMNBD交抛物线于点N(点N在对称轴的右侧),过点NNHx轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;

2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度0°<<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABC内接于O

1)作B的平分线与O交于点D(用尺规作图不用写作法但要保留作图痕迹)

2)在(1)中连接ADBAC=60°C=66°DAC的大小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代伟大的数学家刘微将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形.后人借助这种分割方法所得的图形证明了勾股定理,如图所示若a3b4,则该三角形的面积为(  )

A. 10B. 12C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC的延长线于⊙O的切线AF交于点F.

(1)求证:∠ABC=2∠CAF;

(2)若AC=2,CE:EB=1:4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左、右两数之和,它给出了(a+bnn为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数121,恰好对应(a+b2a2+2ab+b2展开式中的系数;第四行的四个数1331,恰好对应着(a+b3a3+3a2b+3ab2+b2展开式中的系数等.

1)(a+bn展开式中项数共有   项.

2)写出(a+b5的展开式:(a+b5   

3)利用上面的规律计算:255×24+10×2310×22+5×21

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的动点P和图形N,给出如下定义:如果Q为图形N上一个动点,PQ两点间距离的最大值为dmaxPQ两点间距离的最小值为dmin,我们把dmax+dmin的值叫点P和图形N间的和距离,记作dP,图形N).

1)如图1,正方形ABCD的中心为点OA33).

①点O到线段AB和距离dO,线段AB=______

②设该正方形与y轴交于点EF,点P在线段EF上,dP,正方形ABCD=7,求点P的坐标.

2)如图2,在(1)的条件下,过CD两点作射线CD,连接AC,点M是射线CD上的一个动点,如果6dM,线段AC)<6+3,直接写出M点横坐标t取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线分别交x轴、y轴于点BC,正方形AOCD的顶点D在第二象限内,EBC中点,OFDE于点F,连结OE,动点PAO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.

1)求点B的坐标和OE的长;

2)设点Q2为(mn),当tanEOF时,求点Q2的坐标;

3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.

①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3QsAPt,求s关于t的函数表达式.

②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.

查看答案和解析>>

同步练习册答案