【题目】如图,P是等边外一点,把绕点B顺时针旋转60°到,已知,,则_______.(用含a,b的代数式表示)
【答案】.
【解析】
连接PQ,根据旋转的性质可得△ABP≌△CBQ,△PBQ是等边三角形,由全等三角形的性质得到AP=QC,然后求出∠AQP是直角,再利用勾股定理表示出PQ,又等边三角形的三条边相等,代入整理即可得解.
连接PQ.
∵△ABP绕点B顺时针旋转60°得到△CBQ,∴△ABP≌△CBQ,△PBQ是等边三角形,∴AP=QC.
∵QA:QC=a:b,设QA=am,则QC=bm,∴AP=QC=bm,
∵△PBQ是等边三角形,∴∠BQP=60°,PQ=PB.
∵∠AQB=150°,∴∠AQP=150°﹣60°=90°,∴△APQ是直角三角形,
根据勾股定理,PQ,
则PB,∴PB:QA:am=.
故答案为:.
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=15,点D是边BC上一动点(不与B、C重合),∠ADE=∠B=α,DE交AC于点E,且tanα=有以下的结论:① △ADE∽△ACD;② 当CD=9时,△ACD与△DBE全等;③ △BDE为直角三角形时,BD为12或;④ 0<BE≤,其中正确的结论是___________(填入正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)求扇形统计图中C所对圆心角的度数;
(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.
(1)李明步行的速度(单位:米/分)是多少?
(2)李明能否在联欢会开始前赶到学校?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D为直线BC上一动点(不与点B,C重合),在AD的右侧作△ACE,使得AE=AD,∠DAE=∠BAC,连接CE.
(1)当D在线段上时.
①求证:.
②请判断点D在何处时,,并说明理由.
(2)当时,若中最小角为28°,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标平面内,△ABC的三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).
(1)填空:∠ ABC= ,S△ABC= ;
(2)画出△ABC关于x轴的对称图形△A1B1C1,再画出△A1B1C1关于y轴的对称图形△A2B2C2,在x轴上作一点p,使p到A,C两点间的距离和最短;
(3)若M是△ABC内一点,其坐标是(a,b),则△A2B2C2中,点M的对应点的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com