【题目】在 Rt△ABC 中,∠BAC=90°,AC=AB,点 F 是射线 CA 上一点,连接 BF,过 C 作 CE⊥BF,垂足为点 E,直线 CE,AB 相交于点 D.
(1)如图 1,当点 F 在线段 CA 延长线上时,求证:AB+AD=CF;
(2)如图 2,当点 F 在线段 CA 上时,连接 EA,求证:EA 平分∠DEB;
(3)如图 3,当点 F 恰好为线段 CA 的中点时,EF=1,试求△BDE 的面积.
【答案】(1)证明见解析;(2) 证明见解析;(3)9
【解析】
(1)根据题意可以得到△ACD≌△ABF,然后根据全等三角形的性质可以证明结论成立.
(2)过A作AM⊥CD于M, 作AN⊥BE于N可证Rt△CAM≌Rt△BAN,得到AM=AN,利用角平分线的判定即可证明;
(3)可证△CAD≌△BAF,设AD=AF=x则CF=AF=x, ,AB=AC=2x,由∠DCA=∠FCE,∠DAC=∠CEF=90°.可得 根据列出方程求出x的值,求出DE、BE的长即可得出答案.
(1)证明:∵∠BAC=90°,
∴∠CAD=∠FAB=90°.
∵CE⊥BF
∴∠DEB=90°.
∵∠ADC=∠EDB.
∴∠ACD=∠DBE
在Rt△CAD和Rt△BAF中,
,
∴Rt△CAD≌Rt△BAF,
∴AF=AD
∵AC+AF=CF
∴AB+AD=CF
(2)过A作AM⊥CD于M, 作AN⊥BE于N
∴∠CMA=∠BNA=90°.
∵∠BAC=90°,
∴∠CAD=∠FAB=90°.
∵CE⊥BF
∴∠BEC=90°.
∵∠CFE=∠AFB.
∴∠ACD=∠ABF
在Rt△CAM和Rt△BAN中,
,
∴Rt△CAM≌Rt△BAN
∴AM=AN
∵AM=AN, AM⊥CD, AN⊥BE
∴EA平分∠DEB
(3)∵CE⊥BF
∴∠BEC=90°.
∵∠CFE=∠AFB.
∴∠ACD=∠ABF
∵∠BAC=90°,
∴∠CAD=∠FAB=90°.
∵AC=AB
∴△CAD≌△BAF
∴AF=AD
设AD=AF=x
∵F为AC的中点
∴CF=AF=x,AC=2x
∴ ,AB=AC=2x
∵∠DCA=∠FCE,∠DAC=∠CEF=90°
∴
∴
∴
解得
∴
∴
∴DE=CD-CE=3
∴
∴
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限且OC=5,点B在x轴的正半轴上且OB=6,∠OAB=90°且OA=AB.
(1)求点A和点B的坐标;
(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA成边AB于点Q,交边OC或边CB于点R,设点P的横坐标为t,线段QR的长度为m,已知t=4时,直线l恰好过点C,当0<t<3时,求m关于t的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=kx2+(2k-1)x-1与x轴交点的横坐标为x1,x2(x1<x2),则对于下列结论:(1) 当x= -2时,y=1;(2) 当x> x2时,y>0;(3)方程kx2+(2k-1)x-1=0有两个不相等的实数根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正确的结论有_______(只需填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是____________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P为抛物线y=x2上一动点.
(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;
(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.
①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.
②问题解决:如图二,若点Q的坐标为(1.5),求QP+PF的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.给出下列四个结论:①sinα=sinB;②sinβ=sinC;③sinB=cosC;④sinα=cosβ.其中正确的结论有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,,,是线段上靠近点的三等分点.
(1)若点是轴上的一动点,连接、,当的值最小时,求出点的坐标及的最小值;
(2)如图2,过点作,交于点,再将绕点作顺时针方向旋转,旋转角度为,记旋转中的三角形为,在旋转过程中,直线与直线的交点为,直线与直线交于点,当为等腰三角形时,请直接写出的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com