【题目】下列条件中能判断△ABC为直角三角形的是( )
A.∠A +∠B = ∠CB.∠A = ∠B = ∠C
C.∠A-∠B = 90°D.∠A = ∠B = 3∠C
【答案】A
【解析】
根据各项的特点求出各角即可判断.
A. ∵∠A +∠B = ∠C,又∠A +∠B + ∠C=180°,
∴2∠C=180°
得∠C=90°,故为直角三角形;
B. ∠A = ∠B = ∠C, 又∠A +∠B + ∠C=180°,
∴∠A = ∠B = ∠C =60°故不是直角三角形;
C. ∠A-∠B = 90°,∠A +∠B + ∠C=180°,
不能得到∠A=90°,∠B = 90°,∠C=90°,
故不是直角三角形;
D. ∠A = ∠B = 3∠C,又∠A +∠B + ∠C=180°,
∴∠A = ∠B=×180°≠90°,∠C=×180°≠90°,故不是直角三角形;
故选A.
科目:初中数学 来源: 题型:
【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.将三角尺OCD绕点O按每秒30°的速度沿顺时针方向旋转一周,在旋转的过程中,当第________ 秒时,直线CD恰好与直线MN垂直.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠A = ∠B = 90°,AB边上有一点E,CE,DE分别是∠BCD和∠ADC 的角平分线,如果ABCD的面积是12,CD = 8,那么AB的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是的直径,弦于H,过CD延长线上一点E作的切线交AB的延长线于切点为G,连接AG交CD于K.
求证:;
若,试判断AC与EF的位置关系,并说明理由;
在的条件下,若,,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用一条直线分割一个三角形,如果能分割出等腰三角形,那么就称这条直线为该三角形的一条等腰分割线.在直角三角形ABC中,∠C=90°,AC=8,BC=6.
(1)如图(1),若 O 为 AB 的中点,则直线 OC_____△ABC 的等腰分割线(填“是”或“不是”)
(2)如图(2)已知△ABC 的一条等腰分割线 BP 交边 AC 于点 P,且 PB=PA,请求出 CP 的长度.
(3)如图(3),在△ABC 中,点 Q 是边 AB 上的一点,如果直线 CQ 是△ABC 的等腰分割线,求线段BQ 的长度等于 ______.(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠A=40°,
(1)若点P是∠ABC与∠ACB平分线的交点,求∠P的度数;
(2)若点P是∠CBD与∠BCE平分线的交点,求∠P的度数;
(3)若点P是∠ABC与∠ACF平分线的交点,求∠P的度数;
(4)若∠A=β,求(1)(2)(3)中∠P的度数(用含β的代数式表示,直接写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com