【题目】学校组织师生开展植树造林活动,为了了解全校4000名学生的情况,随机抽样调查50名学生的植树情况,制成如下统计表和条形统计图(均不完整)。
(1)将统计表和条形统计图补充完整;
(2)求抽样的50名学生植树数量的平均数;
(3)根据抽样数据,估计该校4000名学生的植树数量。
【答案】(1)答案见解析;(2)4.6棵;(3)18400棵.
【解析】
试题分析:(1)用总人数减去其他小组的人数即可求得植树棵树为5的小组的频数,除以总人数即可得到该组的频率;
(2)用加权平均数计算植树量的平均数即可;
(3)用样本的平均数估计总体的平均数即可.
试题解析:1)统计表和条形统计图补充如下:
植树量为5棵的人数为:50-5-20-10=15,频率为:15÷50=0.3,,
(2)抽样的50名学生植树的平均数是:=4.6(棵).
(3)∵样本数据的平均数是4.6,
∴估计该校4000名学生参加这次植树活动的总体平均数是4.6棵.
于是4.6×4000=18400(棵),
∴估计该校800名学生植树约为18400棵.
科目:初中数学 来源: 题型:
【题目】 阅读并补充下面推理过程:(1)
如图1,已知点A是BC外一点,连接AB,AC.
求∠BAC+∠B+∠C的度数.
解:过点A作ED∥BC,所以∠B= ,∠C= .
又因为∠EAB+∠BAC+∠DAC=180°.
所以∠B+∠BAC+∠C=180°.
方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.
深化拓展:(3)已知AB∥CD,点C在点D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.
.如图3,点B在点A的左侧,若∠ABC=60°,则∠BED的度数为 °.
Ⅱ.如图4,点B在点A的右侧,且AB<CD,AD<BC.若∠ABC=n°,则∠BED的度数为 °.(用含n的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC。
(1)试猜想AE与BD有何关系?说明理由;
(2)请给△ABC添加一个条件,使旋转得到的四边形ABDE为矩形,并说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.
根据以上信息,解答下列问题:
(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;
(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点P是等边△ABC内一点,PA=4,PB=3,PC=5.线段AP绕点A逆时针旋转60°到AQ,连接PQ.(1)求PQ的长。(2)求∠APB的度数。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com