【题目】如图,在直角坐标系XOY中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8,点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB—BC—CO以每秒2个单位长的速度作匀速运动.过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.
(1)当t=2时,求线段PQ的长;
(2)求t为何值时,点P与N重合;
(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.
【答案】(1)PQ=;(2)t=秒时,点P与N重合;(3)S与t的函数关系式为:.
【解析】(1)解直角三角形求出PM,QM即可解决问题;
(2)根据点P、N的路程之和=24,构建方程即可解决问题;
(3)分四种情形考虑问题即可解决问题.
(1)在菱形OABC中,∠AOC=60°,∠AOQ=30°,
当t=2时,OM=2,PM=2,QM=,PQ=.
(2)当t≤4时,AN=PO=2OM=2t,
t=4时,P到达C点,N到达B点,点P,N在边BC上相遇.
设t秒时,点P与N重合,则(t-4)+2(t-4)=8,
∴t=.
即t=秒时,点P与N重合.
(3)①当0≤t≤4时,PN=OA=8,且PN∥OA,PM=t,
S△APN=·8·t=4t;
②当4<t≤时,PN=8-3(t-4)=20-3t,
S△APN=×4×(20-3t)=40-6t;
③当<t≤8时,PN=3(t-4)-8=3t-20,
S△APN=×4×(3t-20)= 6t -4;
④8<t≤12时,ON=24-2t,N到OM距离为12-t,
N到CP距离为4-(12-t)= t-8,CP=t-4,BP=12-t,
S△APN=S菱形-S△AON- S△CPN- S△APB
=32-×8×(12-t)- (t-4)(t-8)-(12-t)×4
= - t2+12t-56
综上,S与t的函数关系式为:
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线,在△ABC中,∠B=30°,AD和 DE是△ABC的三分线,点D在 BC 边上,点E在 AC边上,且AD=BD,DE=CE,请写出∠C所有可能的度数________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l:y=kx+1与抛物线y=x2-4x
(1)求证:直线l与该抛物线总有两个交点;
(2)设直线l与该抛物线两交点为A,B,O为原点,当k=-2时,求△OAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明同学在学习整式时发现,如果合理地使用乘法公式可以简化运算,于是在解此道计算题时他是这样做的(如下):
第一步
第二步
小华看到小明的做法后,对他说:“你做错了,在第一步运用公式时出现了错误,你好好检查一下.”小明认真仔细检查后,自己发现了一处错误圈画了出来,并进行了纠正(如下):
小华看到小明的改错后说:“你还有错没有改出来.”
(1)你认为小华说的对吗?_________(填“对”或“不对”);
(2)如果小华说的对,那么小明还有哪些错误没有找出来,请你帮助小明把第一步中的其它错误圈画出来并改正,然后写出此题的正确解题过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018雾霾天气趋于严重,某商场根据民众健康需要,从厂家购进了A,B两种型号的空气净化器,如果销售15台A型和10台B型空气净化器的利润为6000元,销售10台A型和15台B型空气净化器的利润为6500元.
(1)求每台A型空气净化器和B型空气净化器的销售利润;
(2)该商场计划一次购进两种型号的空气净化器共160台,其中B型空气净化器的进货量不超过A型空气净化器的2倍,设购进A型空气净化器x台,这160台空气净化器的销售总利润为y元.
①求y关于x的函数关系式;
②该公司购进A型、B型空气净化器各多少台时,才能使销售总利润最大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动{即(0,0)﹣(0,1)﹣(1,1)﹣(1,0)…},且每秒移动一个单位,那么第35秒时质点所在位置的坐标是( )
A. (4,0)B. (5,0)C. (0,5)D. (5,5)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调査的结果绘制成如下的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题
(1)参加调査的学生共有 人,在扇形图中,表示“其他球类”的扇形圆心角为 度;
(2)将条形图补充完整;
(3)若该校有2300名学生,则估计喜欢“足球”的学生共有 人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com