1£®¼ÆË㣺
£¨1£©24¡Â£¨$\frac{1}{2}$-$\frac{2}{3}$-$\frac{1}{6}$£©£»      
£¨2£©-14+£¨-2£©2+|2-5|-6¡Á£¨$\frac{1}{2}$-$\frac{1}{3}$£©£»
£¨3£©£¨a-b£©2-£¨a-b+c£©2£»        
£¨4£©-2-4-$\sqrt{12}$+|1-4sin60¡ã|+£¨¦Ð-$\frac{2}{3}$£©0£»
£¨5£©»¯¼òºóÔÙÇóÖµ£º5£¨3a2b-ab2£©-4£¨-ab2+3a2b£©£¬ÆäÖÐa=1¡¢b=-2£»
£¨6£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨1-$\frac{3}{x+2}$£©¡Â$\frac{x-1}{{x}^{2}+2x}$-$\frac{x}{x+1}$£¬ÆäÖÐxÂú×ãx2-x-2=0£®

·ÖÎö £¨1£©¸ù¾ÝÓÐÀíÊýµÄÔËË㣬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝÓÐÀíÊýµÄÔËËã˳Ðò£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ýƽ·½²î¹«Ê½£¬¿ÉµÃ´ð°¸£»
£¨4£©¸ù¾ÝÊÇÊýµÄÔËË㣬¿ÉµÃ´ð°¸£»
£¨5£©¸ù¾ÝÕûʽµÄ»¯¼òÇóÖµ£¬¿ÉµÃ´ð°¸£»
£¨6£©¸ù¾Ý·ÖʽµÄ»¯¼òÇóÖµ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Ô­Ê½=24¡Â$\frac{3-4-1}{6}$=24¡Á£¨-3£©=-72£»
£¨2£©Ô­Ê½=-1+4+3-1=5£»
£¨3£©Ô­Ê½=£¨a-b+a-b+c£©£¨a-b-a+b-c£©=£¨2a-2b+c£©£¨-c£©=-2ac+2bc-c2£»
£¨4£©Ô­Ê½=-$\frac{1}{16}$-2$\sqrt{3}$+2$\sqrt{3}$-1+1=-$\frac{1}{16}$£»
£¨5£©Ô­Ê½=15a2b-5ab2+4ab2-12a2b=3a2b-ab2£¬
µ±a=1£¬b=-2ʱ£¬Ô­Ê½=-6-4=-10£»
£¨6£©x2-x-2=0£¬½âµÃx1=-1£¬x2=2£¬
ԭʽ=$\frac{x-1}{x+2}$•$\frac{x£¨x+2£©}{x-1}$-$\frac{x}{x+1}$=x-$\frac{x}{x+1}$=$\frac{{x}^{2}}{x+1}$£¬
µ±x=-1ʱ£¬·ÖʽÎÞÒâÒ壻
µ±x=2ʱ£¬Ô­Ê½=$\frac{{2}^{2}}{2+1}$=$\frac{4}{3}$£®

µãÆÀ ±¾Ì⿼²éÁË·ÖʽµÄ»¯¼òÇóÖµ£¬ÏÈ»¯¼òÔÙÇóÖµ£¬×¢Òâ·ÖʽÎÞÒâÒåʱҪÉáÈ¥£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¹ÅÏ£À°Êýѧ¼ÒÅÁÆÕ˹ÊǶª·¬Í¼×îµÃÒâµÄÒ»¸öѧÉú£¬ÓÐÒ»ÌìËûÏòÀÏʦÇë½ÌÁËÒ»¸öÎÊÌ⣺4¸öÊý£¬°ÑÆäÖÐÿ3¸öÏà¼Ó£¬ÆäºÍ·Ö±ðΪ22£¬24£¬27£¬20£¬ÎÊÕâËĸöÊý·Ö±ðÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®·ÖʽºÍ·ÖÊýÓÐןܶàµÄÏàËÆµã£¬ÈçÀà±È·ÖÊýµÄ»ù±¾ÐÔÖÊ£¬ÎÒÃǵõ½ÁË·ÖʽµÄ»ù±¾ÐÔÖÊ£¬µÈµÈ£®Ð¡Ñ§À°Ñ·Ö×ӱȷÖĸСµÄ·ÖÊý½Ð×öÕæ·ÖÊý£®ÀàËÆµÄ£¬ÎÒÃǰѷÖ×ӵĴÎÊýСÓÚ·ÖĸµÄ´ÎÊýµÄ·Öʽ³ÆÎªÕæ·Öʽ£¬·´Ö®£¬³ÆÎª¼Ù·Öʽ£®¶ÔÓÚÈκÎÒ»¸ö¼Ù·Öʽ¶¼¿ÉÒÔ»¯³ÉÕûʽÓëÕæ·ÖʽµÄºÍµÄÐÎʽ
£¨1£©½«¼Ù·Öʽ$\frac{x+2}{x-2}$£¬»¯³ÉÕûʽºÍÕæ·ÖʽµÄºÍµÄÐÎʽ£»
£¨2£©½«¼Ù·Öʽ$\frac{{m}^{2}+3}{m+1}$£¬»¯³ÉÕûʽºÍÕæ·ÖʽµÄºÍµÄÐÎʽ£»
£¨3£©½«·Öʽ$\frac{-{x}^{4}-6{x}^{2}+8}{{x}^{2}+1}$»¯³ÉÕûʽºÍÕæ·ÖʽµÄºÍµÄÐÎʽ£¬²¢Çó³ö×î´óÖµÊǶàÉÙ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª£ºÈçͼ£¬ÁâÐÎABCDµÄÁ½Ìõ¶Ô½ÇÏßÏཻÓÚO£¬ÈôAC=8£¬BD=6£¬ÔòÁâÐÎABCDµÄÖܳ¤ÊÇ£¨¡¡¡¡£©
A£®20B£®16C£®12D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÒ»´Îº¯Êýy=kx+bÖУ¬µ±x£¾4ʱ£¬y£¼0£»µ±x£¼0ʱ£¬y£¾3£¬Ôò´ËÒ»´Îº¯ÊýµÄ±í´ïʽ¿ÉΪy=-$\frac{3}{4}$x+3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®½â¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{3x-2y=3}\\{x+2y=5}\end{array}\right.$×îºÃµÄ×ö·¨Ê×ÏȲÉÓ㨡¡¡¡£©
A£®´úÈë·¨B£®¼Ó¼õ·¨C£®¶¼¿ÉÒÔD£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ò»ÖÖµçѶÐźÅת·¢×°Öõķ¢ÉäÖ±¾¶Îª31km£®ÏÖÒªÇó£¬ÔÚÒ»±ß³¤Îª30kmµÄÕý·½ÐγÇÇøÑ¡ÔñÈô¸É¸ö°²×°µã£¬Ã¿¸öµã°²×°Ò»¸öÕâÖÖת·¢×°Öã¬Ê¹ÕâЩװÖÃת·¢µÄÐźÅÄÜÍêÈ«¸²¸ÇÕâ¸ö³ÇÊУ¬ÎÊ£º
£¨1£©ÄÜ·ñÕÒµ½ÕâÑùµÄ4¸ö°²×°µã£¬Ê¹µÃÕâЩµã°²×°ÁËÕâÖÖת·¢×°ÖúóÄÜ´ïµ½Ô¤ÉèµÄÒªÇó£¿
£¨2£©ÓÐÈË˵ֻÐèҪѡÔñ3¸ö°²×°µã£¬¾ÍÄÜʹÕâЩµã°²×°ÁËÕâÖÖת·¢°²Öú󣬿ÉÒÔ´ïµ½Ô¤ÉèµÄÒªÇó£¿ÄãÈÏΪÊÇ·ñ¿ÉÒÔ£¬²¢ËµÃ÷ÀíÓÉ£®£¨ÏÂÃæ¸ø³öÁ˼¸¸ö±ß³¤Îª30kmµÄÕý·½ÐγÇÇøÊ¾Òâͼ£¬¹©½âÌâʱѡÓã©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¡÷ABCµÄÁ½Ìõ¸ßAD¡¢BEËùÔÚµÄÖ±ÏßÏཻÓÚH£¬ÈôCD=DH£®Ôò¡ÏABCµÄ¶ÈÊýΪ45¡ã»ò135¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸