【题目】如题,AB是⊙O的直径,在圆上取点C,延长BC到D,使BC=CD,连接AD交于⊙O于点E,过点C作CF⊥AD,垂足为F.
(1)求证:CF是⊙O的切线.
(2)若,,求CF的长.
【答案】(1)证明过程详见解析;(2)CF的长为2.
【解析】
(1)如图(见解析),连接OC,根据中位线定理可知,再根据平行线的性质可知,最后由圆的切线的判定定理即可得;
(2)如图(见解析),连接BE,易知是直角三角形,再根据平行线的判定定理可得,则CF为的中位线,解直角三角形可求出AB和BE的长,从而可得CF的长.
(1)如图,连接OC
是的一条中位线,不与AD边接触
(中位线定理)
又,即
,即
是⊙O的切线(圆的切线的判定定理);
(2)如图(见解析),连接BE
是圆的直径
是直角三角形,即又
又
,即点C是BD的中点
点F是ED的中点
是的中位线,且
在中,
设,则
由勾股定理得:,即
解得:
故CF的长为2.
科目:初中数学 来源: 题型:
【题目】有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,EF垂直平分矩形ABCD的对角线AC,与AB、CD分别交于点E、F,连接AF.已知AC=4,设AB=x,AF=y,则y关于x的函数关系用图象大致可以表示为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点A、C的坐标分别为(-1,0),(0,-3),直线x=1为抛物线的对称轴.点D为抛物线的顶点,直线BC与对称轴相较于点E.
(1)求抛物线的解析式并直接写出点D的坐标;
(2)点P为直线x=1右方抛物线上的一点(点P不与点B重合).记A、B、C、P四点所构成的四边形面积为S,若S=S△BCD,求点P的坐标;
(3)点Q是线段BD上的动点,将△DEQ延边EQ翻折得到△D′EQ,是否存在点Q使得△D′EQ与△BEQ的重叠部分图形为直角三角形?若存在,请求出BQ的长,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,是的外接圆,连结OA、OB、OC,延长BO与AC交于点D,与交于点F,延长BA到点G,使得,连接FG.
备用图
(1)求证:FG是的切线;
(2)若的半径为4.
①当,求AD的长度;
②当是直角三角形时,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,
OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是【 】
A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数 yax 2(a0) 的图象与反比例函数 y(k0) 的图象交于 A、B两点,且与x轴、y轴分别交于点C、D.已知 tan∠AOC=,AO=.
(1)求这个一次函数和反比例函数的解析式;
(2) 若点 F 是点D 关于 x 轴的对称点,求△ABF 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.
(1)求证:DE是⊙O的切线;
(2)设△CDE的面积为 S1,四边形ABED的面积为 S2.若 S2=5S1,求tan∠BAC的值;
(3)在(2)的条件下,若AE=3,求⊙O的半径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】湖州西山漾湿地公园一休闲草坪上有一架秋千.秋千静止时,底端A到地面的距离AB为0.5m,从竖直位置开始,向右可摆动的最大夹角为37°,若秋千的长OA=2m.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
(1)如图1,当向右摆动到最大夹角时,求A'到地面的距离;
(2)如图2,若有人在B点右侧搭建了一个等腰三角形帐篷,已知BC=0.6m,CD=2m,帐篷的高为1.8m,当人站立在秋千上,请问摆动的过程中是否会撞到帐篷?若不会撞到,请说明理由;若会撞到,则帐篷应该向右移动超过多少米才能不被撞到?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com