【题目】如图,中,对角线与相交于点点为的中点,连接的延长线交的延长线于点连接.
(1)求证:;
(2)若判断四边形的形状,并证明你的结论.
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC,∠BAC=α,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BD,CD.
(1)如图1,
①求证:点B,C,D在以点A为圆心,AB为半径的圆上;
②直接写出∠BDC的度数(用含α的式子表示)为 ;
(2)如图2,当α=60°时,过点D作BD的垂线与直线l交于点E,求证:AE=BD;
(3)如图3,当α=90°时,记直线l与CD的交点为F,连接BF.将直线l绕点A旋转的过程中,在什么情况下线段BF的长取得最大值?若AC=2a,试写出此时BF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点是边上一点(不与点重合),点是延长线上一点,且,连接.
(1)求证:
(2)连接,其中
①当四边形是菱形时,求线段与线段之间的距离;
②若点是的内心,连接,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某电暖科技有限公司准备购进A型(直热式电暖)和B型(智能电风幕电暖)两种设备,经计算,购进 3 台A设备和 2 台B设备需用 6.6 万元,购进 1 台A设备和 3 台B设备需用5. 7 万元 .
请解答下列问题:
(1)求A、B两种设备的进价;
(2)该公司计划用 21 万元同时购进A、B两种设备,若A设备以每台1.5万元的价格出售,B设备以每台2万元的价格出售,且全部售出,请求出所获利润W(单位:万元)与购买A设备的资金m(单位:万元)之间的函数关系式;
(3)在(2)的条件下,要求A设备的利润不低于B设备的利润,并将(2)中的最大利润全部用于购买甲(小米笔记本4000元/台)、乙(华为笔记本6000元/台)两种型号的电脑赠给某中学,请求出有几种购买电脑的方案 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,且∠DAE=45°.设BE=a,DC=b,那么AB=_____(用含a、b的式子表示AB).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,DB∥AC,且DB=AC,E是AC的中点.
(1)求证:四边形BDEC是平行四边形;
(2)连接AD、BE,△ABC添加一个条件: ,使四边形DBEA是矩形(不需说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1、图2均是的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点、、、均在格点上.在图1、图2中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.
(1)在图1中以线段为边画一个,使,且的面积为3;
(2)在图2中以线段为边画一个四边形,使四边形既是轴对称图形又是中心对称图形;
(3)直接写出四边形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到大事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com