【题目】两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?写出结论,证明.
【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,FH⊥FG.证明见解析.
【解析】
(1)证AD=BE,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;
(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.
(1)∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=AD,FH∥AD,FG=BE,FG∥BE,
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
故答案为:相等,垂直.
(2)答:成立,
证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,
∴△ACD≌△BCE
∴AD=BE,
由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,
∴FH=FG,FH⊥FG,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG,FH⊥FG.
连接AD,BE,两线交于Z,AD交BC于X,
同(1)可证
∴FH=AD,FH∥AD,FG=BE,FG∥BE,
∵三角形ECD、ACB是等腰直角三角形,
∴CE=CD,AC=BC,∠ECD=∠ACB=90°,
∴∠ACD=∠BCE,
在△ACD和△BCE中
,
∴△ACD≌△BCE,
∴AD=BE,∠EBC=∠DAC,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB,
∴∠DXB+∠EBC=90°,
∴∠EZA=180°﹣90°=90°,
即AD⊥BE,
∵FH∥AD,FG∥BE,
∴FH⊥FG,
即FH=FG,FH⊥FG,
结论是FH=FG,FH⊥FG.
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+2x+c的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,3).
(1)求该二次函数的表达式;
(2)过点A的直线AD∥BC且交抛物线于另一点D,求直线AD的函数表达式;
(3)在(2)的条件下,请解答下列问题:
①在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由;
②动点M以每秒1个单位的速度沿线段AD从点A向点D运动,同时,动点N以每秒个单位的速度沿线段DB从点D向点B运动,问:在运动过程中,当运动时间t为何值时,△DMN的面积最大,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个质地均匀的小正方体,六个面上分别标有数字1,1,2,4,5,6,掷一次小正方体,观察朝上一面的数字.
(1)朝上的数字是“3”的事件是什么事件?它的概率是多少?
(2)朝上的数字是“1”的事件是什么事件?它的概率是多少?
(3)朝上的数字是偶数的事件是什么事件?它的概率是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图a,P、Q是△ABC的边BC上的两点,且△APQ为等边三角形,AB=AC,
(1)求证:BP=CQ.
(2)如图a,若∠BAC=120,AP=3,求BC的长.
(3)若∠BAC=120,沿直线BC向右平行移动△APQ得到△A′P′Q′(如图b),A′Q′与AC交于点M.当点P移动到何处时,△AA′M≌△CQ′M?证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线y=kx+k﹣2经过点(m,n+1)和(m+1,2n+3),且﹣2<k<0,则n的取值范围是( )
A. ﹣2<n<0B. ﹣4<n<﹣2C. ﹣4<n<0D. 0<n<﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店计划购进A、B两种型号的电动自行车共30辆,其中A型电动自行车不少于20辆,A、B两种型号电动自行车的进货单价分别为2500元、3000元,售价分别为2800元、3500元,设该商店计划购进A型电动自行车m辆,两种型号的电动自行车全部销售后可获利润y元.
(1)求出y与m之间的函数关系式;
(2)该商店如何进货才能获得最大利润?此时最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD,AF分别为△ABC的中线和高,BE为△ABD的角平分线.
(1)若∠BED=40°,∠BAD=25°,求∠BAF的大小;
(2)若△ABC的面积为40,BD=5,求AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.
(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?
(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:
(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是多少小时,中位数是多少小时;
(2)计算被调查学生阅读时间的平均数;
(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com