分析 (1)根据角平分线的性质,可得∠EBO=∠CBO,根据平行线的性质,可得∠EOB=∠CBO,根据等腰三角形的判定即可得到结论;
(2)根据角平分线的性质,可得∠EBO与CBO,∠FOC与∠FCO的关系,根据平行线的性质,可得∠EOB与∠CBO,∠FOC与∠BCO的关系,根据等腰三角形的判定,可得BE与EO,CF与FO的关系,根据线段的和差,可得答案.
解答 解:(1)△BEO是等腰三角形,
理由:∵BO平分∠ABC,
∴∠EBO=CBO,
∵EF∥BC,
∴∠EOB=∠CBO,
∴∠EBO=∠EOB,
∴BE=EO,
∴△BEO是等腰三角形;
(2)∵BO平分∠ABC,CO平分∠ACB,
∴∠EBO=CBO,∠FOC=∠FCO.
∵EF∥BC,
∴∠EOB=∠CBO,∠FOC=∠BCO,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴BE=EO,CF=FO.
∵EO+OF=EF,
∴EF=BE+CF=8cm.
点评 此题考查了等腰三角形的判定,平行线的性质,利用了等量代换的思想,熟练掌握性质与判定是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4x<3y | B. | -x<-y | C. | $\frac{x}{5}$>$\frac{y}{5}$ | D. | x-2015<y-2015 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{3}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com