【题目】如图1,在矩形中,,,是边上一点,连接,将矩形沿折叠,顶点恰好落在边上点处,延长交的延长线于点.
(1)求线段的长;
(2)如图2,,分别是线段,上的动点(与端点不重合),且.
①求证:∽;
②是否存在这样的点,使是等腰三角形?若存在,请求出的长;若不存在,请说明理由.
【答案】(1)3;(2)①见解析;②存在.由①得△DMN∽△DGM,理由见解析
【解析】
(1)根据矩形的性质和折叠的性质得出AD=AF、DE=EF,进而设EC=x,则DE=EF=8﹣x,利用勾股定理求解即可得出答案;
(2)①根据平行线的性质得出△DAE∽△CGE求得CG=6,进而根据勾股定理求出DG=10,得出AD=DG,即可得出答案;②假设存在,由①可得当△DGM是等腰三角形时△DMN是等腰三角形,分两种情况进行讨论:当MG=DG=10时,结合勾股定理进行求解;当MG=DM时,作MH⊥DG于H,证出△GHM∽△GBA,即可得出答案.
解:(1)如图1中,∵四边形ABCD是矩形,
∴AD=BC=10,AB=CD=8,∠B=∠BCD =∠D=90°,
由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8﹣x.
在Rt△ABF中,BF==6,
∴CF=BC﹣BF=10﹣6=4,
在Rt△EFC中,则有:(8﹣x)2=x2+42,
∴x=3,
∴EC=3.
(2)①如图2中,
∵AD∥CG,
∴∠DAE=∠CGE,∠ADE=∠GCE
∴△DAE∽△CGE
∴=,
∴,
∴CG=6,
∴在Rt△DCG中,,
∴AD=DG
∴∠DAG=∠AGD,
∵∠DMN=∠DAM
∴∠DMN=∠DGM
∵∠MDN=∠GDM
∴△DMN∽△DGM
②存在.由①得△DMN∽△DGM
∴当△DGM是等腰三角形时△DMN是等腰三角形
有两种情形:
如图3﹣1中,当MG=DG=10时,
∵BG=BC+CG=16,
∴在Rt△ABG中,,
∴AM=AG - MG = .
如图3﹣2中,当MG=DM时,作MH⊥DG于H.
∴DH=GH=5,
由①得∠DGM =∠DAG=∠AGB
∵∠MHG =∠B
∴△GHM∽△GBA
∴,
∴,
∴,
∴.
综上所述,AM的长为或.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.
(1)求证:CD是⊙O的切线;
(2)∠C=45°,⊙O的半径为2,求阴影部分面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场某种商品平均每天可销售件,每件盈利元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价元,商场平均每天可多售出件,设每件商品降价元(为正整数).据此规律,请回答:
(1)商场日销轡量增加 件,每件商品盈利 元(用含的代数式表示);
(2)每件商品降价多少元时,商场日盈利可达到元;
(3)在上述条件不变,销售正常情况下,求商场日盈利的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等边中,,动点从点出发以的速度沿匀速运动,动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为,过点作于,交边于,线段的中点为,连接.
(1)当为何值时,与相似;
(2)在点、运动过程中,点、也随之运动,线段的长度是否会发生变化?若发生变化,请说明理由,若不发生变化,求的长;
(3)如图2,将沿直线翻折,得,连接,当为何值时,的值最小?并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为后放回,同样的乙也从中随机取出一个小球,记下数字为,这样确定了点的坐标.
(1)请用列表或画树状图的方法写出点所有可能的坐标;
(2)求点在函数的图象上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AC=13,BC=5,BE⊥DC交DC的延长线于点E.
(1)求证:CB是∠ECA的角平分线;
(2)求DE的长;
(3)求证:BE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的顶点坐标分别为, ,.
(1)的面积是_______;
(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;
(3)若为线段上的任一点,则变换后点的对应点的坐标为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com