精英家教网 > 初中数学 > 题目详情

【题目】如图,延长平行四边形的边到点,使,连接于点

1)求证:

2)连接,若,求证四边形是矩形.

【答案】1)证明见解析;(2)证明见解析.

【解析】试题分析:(1)先由已知平行四边形ABCD得出AB∥DC,AB=DC,即可得∠ABF=∠ECF,从而证得△ABF≌△ECF;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.

试题解析:

(1)∵四边形ABCD是平行四边形,

∴AB∥DC,AB=DC,

∴∠ABF=∠ECF,

∵EC=DC,∴AB=EC,

在△ABF和△ECF中,

∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,

∴△ABF≌△ECF.

(2)∵AB=EC,AB∥EC,

∴四边形ABEC是平行四边形,

∴FA=FE,FB=FC,

∵四边形ABCD是平行四边形,

∴∠ABC=∠D,

又∵∠AFC=2∠D,

∴∠AFC=2∠ABC,

∵∠AFC=∠ABC+∠BAF,

∴∠ABC=∠BAF,

∴FA=FB,

∴FA=FE=FB=FC,

∴AE=BC,

∴四边形ABEC是矩形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,对角线ACBD相交于点OAOCOBODO,且∠ABC+ADC180°

1)求证:四边形ABCD是矩形;

2)若∠ADF:∠FDC32DFAC,求∠BDF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,E为AD中点,AC、BE交于F,连接DF,下列结论错误的是( )

A. CF=2AF B. BE⊥AC C. S△ABF = S△ADF D. S四边形CDEF = 5S△AEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果经销商上月份销售一种新上市的水果,平均售价为10/千克,月销售量为1000千克.经市场调查,若将该种水果价格调低至x/千克,则本月份销售量y(千克)与x(元/千克)之间符合一次函数关系,并且得到了表中的数据:

价格x(元/千克)

7

5

价格y(千克)

2000

4000

1)求yx之间的函数解析式;

2)已知该种水果上月份的成本价为5/千克,本月份的成本价为4/千克,要使本月份销售该种水果所获利润比上月份增加20%,同时又要让顾客得到实惠,那么该种水果价格每千克应调低至多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(庆阳中考)现在的青少年由于沉迷电视、手机、网络游戏等,视力日渐减退,某市为了了解学生的视力变化情况,从全市九年级随机抽取了1 500名学生,统计了每个人连续三年视力检查的结果,根据视力在4.9以下的人数变化制成折线统计图,并对视力下降的主要因素进行调查,制成扇形统计图.

解答下列问题:

(1)图中D所在扇形的圆心角度数为______

(2)2016年全市共有30 000名九年级学生,请你估计视力在4.9以下的学生约有多少名?

(3)根据扇形统计图信息,你觉得中学生应该如何保护视力?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知是⊙的直径,弦交于点,过点作⊙的切线与的延长线交于点 交直线于点

)若,求证: 是⊙的切线;

)如果 的中点,求直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与探究

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:

在我们所学过的特殊四边形中,是勾股四边形的是________ (任写一种即可)

1、图2均为的正方形网格,点均在格点上,请在图中标出格点,连接,使得四边形符合下列要求:图1中的四边形是勾股四边形,并且是轴对称图形;图2中的四边形是勾股四边形且对角线相等,但不是轴对称图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰中,,点是边上不与点重合的一个动点,直线垂直平分,垂足为.当是等腰三角形时,的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠A=C=45°,ADB=ABC=105°.

(1)若AD=2,求AB;

(2)若AB+CD=2+2,求AB.

查看答案和解析>>

同步练习册答案