精英家教网 > 初中数学 > 题目详情

【题目】如图,在四边形ABCD中,∠A=C=45°,ADB=ABC=105°.

(1)若AD=2,求AB;

(2)若AB+CD=2+2,求AB.

【答案】(1)AB=;(2)AB=+1.

【解析】试题分析:(1)根据∠A=∠C=45°,∠ADB=∠ABC=105°,得到∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADEBCF为等腰直角三角形,即可求出AE的长,利用锐角三角函数可求得BE的长从而得到AB的长

(2)设DE=x,利用(1)的某些结论,特殊角的三角函数和勾股定理,表示ABCD即可得到答案

(1)过A点作DEAB,过点BBFCD,∵∠A=∠C=45°,∠ADB=∠ABC=105°,∴∠ADC=360°﹣∠A﹣∠C﹣∠ABC=360°﹣45°﹣45°﹣105°=165°,∴∠BDF=∠ADC﹣∠ADB=165°﹣105°=60°,△ADEBCF为等腰直角三角形,AD=2,∴AE=DE==,∵∠ABC=105°,∴∠ABD=105°﹣45°﹣30°=30°,∴BE===,∴AB=

(2)设DE=x,则AE=xBE===,∴BD==2x,∵∠BDF=60°,∴∠DBF=30°,∴DF=BD=x,∴BF===,∴CF=,∵AB=AE+BE=CD=DF+CF=AB+CD=,∴AB=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,延长平行四边形的边到点,使,连接于点

1)求证:

2)连接,若,求证四边形是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201910月,某市高质量通过全国文明城市测评,该成绩的取得得益于领导高度重视(A)、整改措施有效(B)、市民积极参与(C)、市民文明素质(D).某数学兴趣小组随机走访了部分市民,对这四项认可度进行调查(只选填最认可的一项),并将调查结果制作了如下两幅不完整的统计图.

1)请补全D项的条形图;

2)已知BC两项条形图的高度之比为35

①选BC两项的人数各为多少个?

②求α的度数,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,AB4ADBC边上的中线,将△ABD绕点A旋转,使ABAC重合,连接DE,则线段DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年泉州市初中体育中考中随意抽取某校5位同学一分钟跳绳的次数分别为158160154158170则由这组数据得到的结论错误的是(  )

A. 平均数为160 B. 中位数为158 C. 众数为158 D. 方差为20.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论中,错误结论有( );①三角形三条高(或高的延长线)的交点不在三角形的内部,就在三角形的外部;②一个多边形的边数每增加一条,这个多边形的内角和就增加360;③两条平行直线被第三条直线所截,同旁内角的角平分线互相平行;④三角形的一个外角等于任意两个内角的和;⑤在中,若,则为直角三角形;⑥顺次延长三角形的三边,所得的三角形三个外角中锐角最多有一个

A. 6B. 5C. 4D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x+4

1)用配方法确定它的顶点坐标、对称轴;

2x取何值时,yx增大而减小?

3x取何值时,抛物线在x轴上方?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BAx轴,AC是射线.

(1)当x30,求y与x之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元的上网费用?

(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

查看答案和解析>>

同步练习册答案