精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

【答案】2.5

【解析】试题分析:∵△DAE逆时针旋转90°得到△DCM∴∠FCM=∠FCD+∠DCM=180°

∴FCM三点共线,∴DE=DM∠EDM=90°∴∠EDF+∠FDM=90°∵∠EDF=45°∴∠FDM=∠EDF=45°

△DEF△DMF中,∴△DEF≌△DMFSAS),∴EF=MF,设EF=MF=x

∵AE=CM=1,且BC=3∴BM=BC+CM=3+1=4∴BF=BM﹣MF=BM﹣EF=4﹣x

∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+4﹣x2=x2

解得:x=∴FM=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】西瓜经营户以2/千克的价格购进一批小型西瓜,以3/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,为了减少库存,该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低(  )元.

A.0.2或0.3

B.0.4

C.0.3

D.0.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现:如图1,ACBDCE均为等边三角形,当DCE旋转至点A,D,E在同一直线上,连接BE.

填空:① AEB的度数为_______②线段AD、BE之间的数量关系是______

(2)拓展研究:

如图2,ACBDCE均为等腰三角形,且∠ACB=DCE=90°,点A、D、E在同一直线上,若AE=15,DE=7,求AB的长度.

(3)探究发现:

1中的ACBDCE,在DCE旋转过程中当点A,D,E不在同一直线上时,设直线ADBE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.

【答案】160°AD=BE;(2AB=17;(3AOE的度数是60°120°

【解析】试题分析:1)由条件易证ACD≌△BCE,从而得到:AD=BEADC=BEC.由点ADE在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.

2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由DCE为等腰直角三角形及CMDCEDE边上的高可得CM=DM=ME,从而证到AE=2CH+BE

3)由(1)知ACD≌△BCE,得∠CAD=CBE,由∠CAB=ABC=60°,可知∠EAB+ABE=120°,根据三角形的内角和定理可知∠AOE=60°

试题解析:1ACBDCE均为等边三角形,

CA=CBCD=CEACB=DCE=60°.

∴∠ACD=BCE.

ACDBCE中,

ACDBCE(SAS).

∴∠ADC=BEC.

DCE为等边三角形,

∴∠CDE=CED=60°.

∵点ADE在同一直线上,

∴∠ADC=120°.

∴∠BEC=120°.

∴∠AEB=BECCED=60°.

故答案为:60°.

②∵ACDBCE

AD=BE.

故答案为:AD=BE.

2ACBDCE均为等腰直角三角形,

CA=CBCD=CEACB=DCE=90°.

∴∠ACD=BCE.

ACDBCE中,

ACDBCE(SAS).

AD=BE=AE-DE=8ADC=BEC

DCE为等腰直角三角形

∴∠CDE=CED=45°.

∵点ADE在同一直线上,

∴∠ADC=135°.

∴∠BEC=135°.

∴∠AEB=BECCED=90°.

AB==17

31ACDBCE

∴∠CAD=CBE

∵∠CAB=CBA=60°

∴∠OAB+OBA=120°

∴∠AOE=180°120°=60°

同理求得∠AOB=60°

∴∠AOE=120°

∴∠AOE的度数是60°120°.

点睛:本题考查了等边三角形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力.

型】解答
束】
26

【题目】如图,直线MNy=-xbx轴交于点M40),与y轴交于点N,长方形ABCD的边ABx轴上,AB2AD1.长方形ABCD由点A与点O重合的位置开始,以每秒1个单位长度的速度沿x轴正方向作匀速直线运动,当点A与点M重合时停止运动.设长方形运动的时间为t秒,长方形ABCD与△OMN重合部分的面积为S

1)求直线MN的解析式;

2)当t1时,请判断点C是否在直线MN上,并说明理由;

3)请求出当t为何值时,点D在直线MN上;

4)直接写出在整个运动过程中St的函数关系式

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2), (2,2)···根据这个规律,第140个点的坐标为__________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从﹣3,﹣2,﹣1,0,1,3,4这七个数中随机抽取一个数记为a,a的值既是不等式组 的解,又在函数y= 的自变量取值范围内的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线AB∥CD,点E,F分别在直线AB,CD上,点M为平面内一点.

(1)如图1,∠AEM,∠M,∠CFM的数量关系为 ;(直接写出答案)

(2)如图2,∠AEM=48°,MN平分∠EMF,FH平分∠MFC,MK∥FH,求∠NMK的度数;

(3)如图3,点P为CD上一点,∠BEF=n·∠MEF,∠PMQ=n·∠PME,过点M作MN∥EF交AB于点N,请直接写出∠PMQ,∠BEF,∠PMN之间的数量关系.(用含n的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中, △ABC的三个顶点的位置如图所示,点A'的坐标是

(-2,2, 现将ABC平移,使点A变换为点A',BC分别是BC的对应点。

1)请画出平移后的像A'B'C'(不写画法) ,并直接写出点BC的坐标:

B ( ) C ( )

2)若ABC 内部一点P的坐标为(a,b),则点P   的对应点P 的坐标是 ( ) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

(1)

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(Ⅰ)如图1,在等边中,点上的任意一点(不含端点, ),连结,以为边作等边,并连结求证:

(Ⅱ)【类比探究】

如图2,在等边中,若点延长线上的任意一点(不含端点),其它条件不变,则是否还成立?若成立,请说明理由;若不成立,请写出, , 三者间的数量关系,并给予证明.

(Ⅲ)【拓展延伸】

如图3,在等腰中, ,点上的任意一点(不含端点),连结,以为边作等腰,使,试探究的数量关系,并说明理由.

查看答案和解析>>

同步练习册答案