【题目】某校在一次献爱心捐款活动中,学校团支部为了解本校学生的各类捐款人数的情况,进行了一次统计调查,并绘制成了统计图①和②,请解答下列问题.
(1)本次共调查了多少名学生.
(2)补全条形统计图.
(3)这些学生捐款数的众数为 ,中位数为 .
(4)求平均每个学生捐款多少元.
(5)若该校有600名学生,那么共捐款多少元.
【答案】(1)本次调查的学生总人数为50人;(2)补全条形图见解析;(3)15元、15元;(4)平均每个学生捐款13元;(5)该校有600名学生,那么共捐款7800元.
【解析】
(1)由捐款5元的人数及其所占百分比可得总人数;
(2)总人数乘以对应百分比求得捐10元、20元的人数,据此补全图形可得;
(3)根据众数和中位数的定义计算可得;
(4)根据加权平均数的定义求解可得;
(5)总人数乘以样本中每个学生平均捐款数可得.
(1)本次调查的学生总人数为8÷16%=50(人);
(2)10元的人数为50×28%=14(人),20元的人数为50×12%=6(人),
补全条形图如下:
(3)捐款的众数为15元,中位数为=15(元),
故答案为:15元、15元.
(4)平均每个学生捐款 =13(元);
(5)600×13=7800,
答:若该校有600名学生,那么共捐款7800元.
科目:初中数学 来源: 题型:
【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,y与x成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:
(1)药物燃烧时,y关于x的函数关系式为 ,自变量x的取值范为 ;药物燃烧后,y关于x的函数关系式为 .
(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过 分钟后,员工才能回到办公室;
(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景
如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,
,于是.
迁移应用
(1)如图2,△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=120°,D,E,C三点在同一直线上,连接BD.
(ⅰ)求证:△ADB≌△AEC;
(ⅱ)请直接写出线段AD,BD,CD之间的等量关系式.
拓展延伸
(2)如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.
(ⅰ)证明:△CEF是等边三角形;
(ⅱ)若AE=5,CE=2,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,直线与轴分别交于点、点,直线交于点,是直线上一动点,且在点的上方,设点.
(1)当四边形的面积为38时,求点的坐标,此时在轴上有一点,在轴上找一点,使得最大,求出的最大值以及此时点坐标;
(2)在第(1)问条件下,直线左右平移,平移的距离为. 平移后直线上点,点的对应点分别为点、点,当为等腰三角形时,直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同.甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.
(1)直接写出乙每天加工的零件个数;(用含x的代数式表示)
(2)求甲、乙每天各加工零件多少个?
(3)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知多项式2x3y﹣xy+16的次数为a,常数项为b,a,b分别对应着数轴上的A、B两点.
(1)a= ,b= ;并在数轴上画出A、B两点;
(2)若点P从点A出发,以每秒3个单位长度单位的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍;
(3)数轴上还有一点C的坐标为30,若点P和Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动,P到达C点后,再立即以同样的速度返回,运动的终点A,求点P和点Q运动多少秒时,P,Q两点之间的距离为4,并求出此时点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系 xOy 中,正比例函数 y=kx 与一次函数 y=x+b 的图象相交于点 A(4,3).过点 P(2,0)作 x 轴的垂线,分别交正比例函数的图象于点 B,交一次函数的图象于点 C, 连接 OC.
(1)求这两个函数解析式;
(2)求△OBC 的面积;
(3)在 x 轴上是否存在点 M,使△AOM 为等腰三角形? 若存在,直接写出 M 点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣2分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点D,且OD∥AB.
(1)求k的值;
(2)连接OP、AD,求证:四边形APOD是菱形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com