【题目】在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.
(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.
①写出∠MDA= °,AB的长是 .
②求四边形AMDN的周长;
(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.
【答案】(1)①90,18;②30;(2)详见解析.
【解析】
(1)①先根据角平分线的定义可求出∠BAD的度数,再利用平行线的性质求出∠ADN的度数,进而可得∠MDA的度数;易求得∠B=30°,然后利用30°角的直角三角形的性质即可求出AB的长;
②易求得∠ADN=∠DAN=∠CDN=30°,然后利用30°角的直角三角形的性质和等腰三角形的判定可得DN=2CN,AN=DN,进一步可得AC=3CN,即可求出CN的长,进而可求AN、DN的长,而由已知MD=ND,所以MD可得,然后在直角△AMD中利用30°角的直角三角形的性质即可求出AM的长,问题即得解决;
(2)过点D作DG⊥AB于G,由HL分别证明Rt△ADG≌Rt△ADF和Rt△DFN≌Rt△DGM,得MG=NF,AG=AF,再把AM+AN变形即可得出结论.
解:(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,
∵ND∥AB,∴∠ADN=∠BAD=30°,
∵∠MDN=120°,∴∠MDA=90°;
∵∠C=90°,∠BAC=60°,∴∠B=30°,
∵AC=9,∴AB=18;
故答案为:90,18;
②在△ACD中,∵∠C=90°,∠CAD=30°,∴∠ADC=60°,
∵∠ADN=30°,∴∠CDN=30°,∠ADN=∠DAN,∴DN=2CN,AN=DN,
∵AC=9,∴AN+CN=2CN+CN=9,解得:CN=3,∴AN=DN=6,
∵DM=DN,∴DM=6,
∵∠MDA=90°,∠BAD =30°,∴AM=2MD=12,
∴四边形AMDN的周长=AM+MD+DN+NA=12+6+6+6=30;
(2)补全图乙如图1,证明:过点D作DG⊥AB于G,如图2所示:
∵AD平分∠BAC,DF⊥AC,∴DF=DG,
在Rt△ADG和Rt△ADF中,,
∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,
在Rt△DFN和Rt△DGM中,,
∴Rt△DFN≌Rt△DGM(HL),∴NF=MG,
又∵AG=AF,
∴AM+AN=AG+MG+AN=AF+NF+AN=AF+AF=2AF.
科目:初中数学 来源: 题型:
【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4),
(1)将△ABC各顶点的横坐标保持不变,纵坐标分别减5后得到△A1B1C1;
①请在图中画出△A1B1C1;
②求这个变换过程中线段AC所扫过的区域面积;
(2)将△ABC绕点(1,0)按逆时针方向旋转90°后得到的△A2B2C2,请在图中画出△A2B2C2,并分别写出△A2B2C2的顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若一个三角形中,其中有一个内角是另外一个内角的一半,则这样的三角形叫做“半角三角形”. 例如:等腰直角三角形就是“半角三角形”.在钝角三角形中,,,,过点的直线交边于点.点在直线上,且.
(1)若,点在延长线上.
① 当,点恰好为中点时,依据题意补全图1.请写出图中的一个“半角三角形”:_______;
② 如图2,若,图中是否存在“半角三角形”(△除外),若存在,请写出图中的“半角三角形”,并证明;若不存在,请说明理由;
(2)如图3,若,保持的度数与(1)中②的结论相同,请直接写出,, 满足的数量关系:______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB>BC,直线l垂直平分AC.
(1)如图1,作∠ABC的平分线交直线l于点D,连接AD,CD.
①补全图形;
②判断∠BAD和∠BCD的数量关系,并证明.
(2)如图2,直线l与△ABC的外角∠ABE的平分线交于点D,连接AD,CD.求证:∠BAD=∠BCD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A在直线l上,点B在直线l外,点B关于直线l的对称点为C,连接AC,过点B作BD⊥AC于点D,延长BD至E使BE=AB,连接AE并延长与BC的延长线交于点F.
(1)补全图形;
(2)若∠BAC=2α,求出∠AEB的大小(用含α的式子表示);
(3)用等式表示线段EF与BC的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线经过的直角顶点的边上有两个动点,点以的速度从点出发沿移动到点,点以的速度从点出发,沿移动到点,两动点中有一个点到达终点后另一个点继续移动到终点过点分别作,垂足分别为点.若,设运动时间为,则当___时,以点为顶点的三角形与以点为顶点的三角形全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.
()自变量的取值范围是全体实数,与的几组对应值列表:
其中__________.
()根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.
()观察函数图象,写出一条函数的性质.
()进一步探究函数图象发现:
①方程有__________个实数根.
②方程有个实数根,的取值范围是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com