【题目】如图,直线
经过
的直角顶点
的边上有两个动点
,点
以
的速度从点
出发沿
移动到点
,点
以
的速度从点
出发,沿
移动到点
,两动点中有一个点到达终点后另一个点继续移动到终点过点
分别作![]()
,垂足分别为点
.若
,设运动时间为
,则当
___
时,以点
为顶点的三角形与以点
为顶点的三角形全等.
![]()
【答案】1或
或![]()
【解析】
分当E在BC线段上时,此时D在AC线段上;当E在AC线段上时,且D在AC线段上;当E到达A时,且D在BC线段上,三种情况进行讨论,相应列出方程求解即可.
解:当E在BC线段上时,此时D在AC线段上,
故CE=8-3t,CD=6-t,
当DC=CE时,
故8-3t =6-t
解得:t=1
当E在AC线段上时,且D在AC线段上,
故CE=3t-8,CD=6-t,
当DC=CE时,
故3t-8 =6-t
解得:
当E到达A时,且D在BC线段上,
故CE=6,CD=t-6,
当DC=CE时,
故6 =t-6
解得:
综上所述:t=1或
或
时,,以点
为顶点的三角形与以点
为顶点的三角形全等.
故答案为:1或
或![]()
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表示活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 | 0.58 | 0.64 | 0.58 | 0.59 | 0.605 | 0.601 |
请估算口袋中白球约是( )只.
A. 8 B. 9 C. 12 D. 13
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题背景)
如图,在平面直角坐标系
中,点
的坐标是
,点
是
轴上的一个动点.当点
在
轴上移动时,始终保持
是等腰直角三角形,且
(点
、
、
按逆时针方向排列);当点
移动到点
时,得到等腰直角三角形
(此时点
与点
重合).
(初步探究)
(1)写出点
的坐标______.
(2)点
在
轴上移动过程中,当等腰直角三角形
的顶点
在第四象限时,连接
.
求证:
;
(深入探究)
(3)当点
在
轴上移动时,点
也随之运动.经过探究发现,点
的横坐标总保持不变,请直接写出点
的横坐标:______.
(拓展延伸)
(4)点
在
轴上移动过程中,当
为等腰三角形时,直接写出此时点
的坐标.
备用图![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AD平分∠BAC交BC于D,∠MDN的两边分别与AB,AC相交于M,N两点,且DM=DN.
(1)如图甲,若∠C=90°,∠BAC=60°,AC=9,∠MDN=120°,ND∥AB.
①写出∠MDA= °,AB的长是 .
②求四边形AMDN的周长;
![]()
(2)如图乙,过D作DF⊥AC于F,先补全图乙再证明AM+AN=2AF.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边△ABC 中,点 D 是线段 BC 上一点.作射线 AD ,点 B 关于射线 AD 的对称点为 E .连接 EC 并延长,交射线 AD 于点 F .
![]()
(1)补全图形;(2)求∠AFE 的度数;(3)用等式表示线段 AF 、CF 、 EF 之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将一块含有
角的三角板放置在一条直线上,
边与直线
重合,
边的垂直平分线与边
分别交于
两点,连接
.
![]()
![]()
(1)
是 三角形;
(2)直线
上有一动点
(不与点
重合) ,连接
并把
绕点
顺时针旋转
到
,连接
.当点
在图2所示的位置时,证明
.我们可以用
来证明
,从而得到
.当点
移动到图3所示的位置时,结论是否依然成立?若成立,请你写出证明过程;若不成立,请你说明理由.
(3)当点
在
边上移动时(不与点
重合),
周长的最小值是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的任意两点
,
,我们把
叫
,
两点间的“平面距离”,记作
.
(
)已知
为坐标原点,动点
是坐标轴上的点,满足
,请写出点
的坐标.答:__________.
(
)设
是平面上一点,
是直线
上的动点,我们定义
的最小值叫做
到直线
的“平面距离”.试求点
到直线
的“平面距离”.
(
)在上面的定义基础上,我们可以定义平面上一条直线
与⊙
的“直角距离”:在直线
与⊙
上各自任取一点,此两点之间的“平面距离”的最小值称为直线
与⊙
的“平面距离”,记作
.
试求直线
与圆心在直线坐标系原点、半径是
的⊙
的直角距离
__________.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请阅读下列材料:
问题:如图,在正方形
和平行四边形
中,点
,
,
在同一条直线上,
是线段
的中点,连接
,
.
探究:当
与
的夹角为多少度时,平行四边形
是正方形?
小聪同学的思路是:首先可以说明四边形
是矩形;然后延长
交
于点
,构造全等三角形,经过推理可以探索出问题的答案.
请你参考小聪同学的思路,探究并解决这个问题.
![]()
(1)求证:四边形
是矩形;
(2)
与
的夹角为________度时,四边形
是正方形.
理由:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:
(1)求拱桥所在抛物线的解析式;
(2)当水面下降1m时,则水面的宽度为多少?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com